
for Information Technology
Common Criteria

Security Evaluation

CCEB-96/013_D

Part 3: Annex D
Evaluation

assurance levels

Version 1.00

96/01/31

This document is paginated from i to xii and from 1 to 232

Foreword

Following extensive international cooperation to align the source criteria from Canada (CTCPEC),
Europe (ITSEC) and the United States of America (TCSEC and Federal Criteria), version 1.0 of
theCommon Criteria for Information Technology Security Evaluation is issued for the purpose of
trial evaluations and for review by the international security community. The practical experience
acquired through trial evaluations and all the comments received will be used to further develop
the criteria.

A template for reporting observations on version 1.0 of the CC is included at the end of this
document. Any observation reports should be communicated to one or more of the following points
of contact at the sponsoring organisations:

National Institute of Standards and Technology National Security Agency
Computer Security Division Attn: V2, Common Criteria Technical Advisor
NIST North Building, Room 426 Fort George G. Meade, Maryland 21122
Gaithersburg, Maryland 20899 U.S.A.
U.S.A. Tel: (+1)(410)859-4458, Fax:(+1)(410)684-7512
Tel: (+1)(301)975-2934, Fax:(+1)(301)926-2733 E-mail: common_criteria@radium.ncsc.mil
E-mail:csd@nist.gov
http://csrc.ncsl.nist.gov

Communications Security Establishment UK IT Security and Certification Scheme
Criteria Coordinator Senior Executive
R2B IT Security Standards and Initiatives P.O. Box 152
P.O. Box 9703, Terminal Cheltenham GL52 5UF
Ottawa, Canada K1G 3Z4 United Kingdom
Tel:(+1)(613)991-7409, Fax:(+1)(613)991-7411 Tel: (+44) 1242 235739, Fax:(+44)1242 235233
E-mail:criteria@cse.dnd.ca E-mail: ccv1.0@itsec.gov.uk
ftp:ftp.cse.dnd.ca ftp: ftp.itsec.gov.uk
http://www.cse.dnd.ca http://www.itsec.gov.uk

Bundesamt für Sicherheit in der Informationstechnik Service Central de la Sécurité des Systèmes
Abteilung V d’Information
Postfach 20 03 63 Bureau Normalisation, Critères Communs
D-53133 Bonn 18 rue du docteur Zamenhof
Germany 92131 Issy les Moulineaux
Tel: (+49)228 9582 300, Fax:(+49)228 9582 427 France
E-mail:cc@bsi.de Tel: (+33)(1)41463784, Fax:(+33)(1)41463701

E-mail:ssi28@calvacom.fr

Netherlands National Communications Security Agency
P.O. Box 20061
NL 2500 EB The Hague
The Netherlands
Tel: (+31).70.3485637, Fax:(+31).70.3486503
E-mail: criteria@nlncsa.minbuza.nl

CCEB-96/013_D Table of contents

96/01/31 Version 1.00 Page iii of xii

Table of contents

Chapter 1
Introduction . 1

Chapter 2
Assurance levels . 3

2.1 Evaluation assurance level (EAL) overview . 4
2.2 Evaluation assurance level details . 5
2.2.1 Evaluation assurance level 1 (EAL1) - functionally tested 6
2.2.2 Evaluation assurance level 2 (EAL2) - structurally tested 7
2.2.3 Evaluation assurance level 3 (EAL3) - methodically tested and checked . 8
2.2.4 Evaluation assurance level 4 (EAL4) - methodically designed, tested, and

reviewed . 10
2.2.5 Evaluation assurance level 5 (EAL5) - semiformally designed and tested 12
2.2.6 Evaluation assurance level 6 (EAL6) - semiformally verified design and

tested . 14
2.2.7 Evaluation assurance level 7 (EAL7) - formally verified design and tested 16

Chapter 3
Detailed EAL requirements . 19

EAL 1
Functionally tested . 21

ACM Configuration management
ACM_CAP CM capabilities . 21

ACM_CAP.1 Minimal support . 22
ADV Development
ADV_FSP Functional specification . 23

ADV_FSP.1 TOE and security policy . 24
ADV_RCR Representation correspondence . 25

ADV_RCR.1 Informal correspondence demonstration 26
AGD Guidance documents
AGD_ADM Administrator guidance . 27

AGD_ADM.1 Administrator guidance . 27
AGD_USR User guidance . 28

AGD_USR.1 User guidance . 29
ATE Tests
ATE_IND Independent testing . 30

ATE_IND.1 Independent testing - conformance 30

Table of contents CCEB-96/013_D

Page iv of xii Version 1.00 96/01/31

EAL 2
Structurally tested . 33

ACM Configuration management
ACM_CAP CM capabilities . 33

ACM_CAP.1 Minimal support . 34
ADO Delivery and operation
ADO_IGS Installation, generation, and start-up . 35

ADO_IGS.1 Installation, generation, and start-up procedures 35
ADV Development
ADV_FSP Functional specification . 36

ADV_FSP.1 TOE and security policy . 37
ADV_HLD High-level design . 38

ADV_HLD.1 Descriptive high-level design . 39
ADV_RCR Representation correspondence . 40

ADV_RCR.1 Informal correspondence demonstration 41
AGD Guidance documents
AGD_ADM Administrator guidance . 41

AGD_ADM.1 Administrator guidance . 42
AGD_USR User guidance . 43

AGD_USR.1 User guidance . 44
ATE Tests
ATE_COV Coverage . 45

ATE_COV.1 Complete coverage - informal . 45
ATE_DPT Depth . 46

ATE_DPT.1 Testing - functional specification . 46
ATE_FUN Functional tests . 47

ATE_FUN.1 Functional testing . 47
ATE_IND Independent testing . 48

ATE_IND.1 Independent testing - conformance 49
AVA Vulnerability assessment
AVA_SOF Strength of TOE security functions . 50

AVA_SOF.1 Strength of TOE security function evaluation 50
AVA_VLA Vulnerability analysis . 51

AVA_VLA.1 Developer vulnerability analysis . 52

EAL 3
Methodically tested and checked . 55

ACM Configuration management
ACM_CAP CM capabilities . 55

ACM_CAP.2 Authorisation controls . 56
ACM_SCP CM scope . 57

ACM_SCP.1 Minimal CM coverage . 58
ADO Delivery and operation
ADO_IGS Installation, generation, and start-up . 58

ADO_IGS.1 Installation, generation, and start-up procedures 59
ADV Development
ADV_FSP Functional specification . 60

CCEB-96/013_D Table of contents

96/01/31 Version 1.00 Page v of xii

ADV_FSP.1 TOE and security policy . 61
ADV_HLD High-level design . 62

ADV_HLD.2 Security enforcing high-level design 63
ADV_RCR Representation correspondence . 64

ADV_RCR.1 Informal correspondence demonstration 64
AGD Guidance documents
AGD_ADM Administrator guidance . 65

AGD_ADM.1 Administrator guidance . 66
AGD_USR User guidance . 67

AGD_USR.1 User guidance . 67
ALC Life cycle support
ALC_DVS Development security . 68

ALC_DVS.1 Identification of security measures 69
ATE Tests
ATE_COV Coverage . 70

ATE_COV.2 Complete coverage - rigorous . 70
ATE_DPT Depth . 71

ATE_DPT.2 Testing - high level design . 71
ATE_FUN Functional tests . 72

ATE_FUN.1 Functional testing . 73
ATE_IND Independent testing . 73

ATE_IND.2 Independent testing - sample . 74
AVA Vulnerability assessment
AVA_MSU Misuse . 75

AVA_MSU.1 Misuse analysis - obvious flaws . 76
AVA_SOF Strength of TOE security functions . 77

AVA_SOF.1 Strength of TOE security function evaluation 77
AVA_VLA Vulnerability analysis . 78

AVA_VLA.1 Developer vulnerability analysis . 79

EAL 4
Methodically designed, tested, and reviewed . 81

ACM Configuration management
ACM_AUT CM automation . 81

ACM_AUT.1 Partial CM automation . 81
ACM_CAP CM capabilities . 82

ACM_CAP.3 Generation support and acceptance procedures 83
ACM_SCP CM scope . 85

ACM_SCP.2 Problem tracking CM coverage . 85
ADO Delivery and operation
ADO_IGS Installation, generation, and start-up . 86

ADO_IGS.1 Installation, generation, and start-up procedures 87
ADV Development
ADV_FSP Functional specification . 87

ADV_FSP.2 Informal security policy model . 89
ADV_HLD High-level design . 90

ADV_HLD.2 Security enforcing high-level design 91
ADV_IMP Implementation representation . 92

Table of contents CCEB-96/013_D

Page vi of xii Version 1.00 96/01/31

ADV_IMP.1 Subset of the implementation of the TSF 93
ADV_LLD Low-level design . 94

ADV_LLD.1 Descriptive low-level design . 94
ADV_RCR Representation correspondence . 95

ADV_RCR.1 Informal correspondence demonstration 96
AGD Guidance documents
AGD_ADM Administrator guidance . 97

AGD_ADM.1 Administrator guidance . 97
AGD_USR User guidance . 98

AGD_USR.1 User guidance . 99
ALC Life cycle support
ALC_DVS Development security . 100

ALC_DVS.1 Identification of security measures 100
ALC_LCD Life cycle definition . 101

ALC_LCD.1 Developer defined life-cycle model 101
ALC_TAT Tools and techniques . 102

ALC_TAT.1 Well defined development tools . 102
ATE Tests
ATE_COV Coverage . 103

ATE_COV.2 Complete coverage - rigorous . 104
ATE_DPT Depth . 105

ATE_DPT.2 Testing - high level design . 105
ATE_FUN Functional tests . 106

ATE_FUN.1 Functional testing . 107
ATE_IND Independent testing . 107

ATE_IND.2 Independent testing - sample . 108
AVA Vulnerability assessment
AVA_MSU Misuse . 109

AVA_MSU.2 Misuse analysis - independent verification 110
AVA_SOF Strength of TOE security functions . 111

AVA_SOF.1 Strength of TOE security function evaluation 111
AVA_VLA Vulnerability analysis . 112

AVA_VLA.2 Independent vulnerability analysis 113

EAL 5
Semiformally designed and tested . 115

ACM Configuration management
ACM_AUT CM automation . 115

ACM_AUT.1 Partial CM automation . 115
ACM_CAP CM capabilities . 116

ACM_CAP.3 Generation support and acceptance procedures 117
ACM_SCP CM scope . 118

ACM_SCP.3 Development tools CM coverage . 119
ADO Delivery and operation
ADO_IGS Installation, generation, and start-up . 120

ADO_IGS.1 Installation, generation, and start-up procedures 120
ADV Development
ADV_FSP Functional specification . 121

CCEB-96/013_D Table of contents

96/01/31 Version 1.00 Page vii of xii

ADV_FSP.4 Formal security policy model . 123
ADV_HLD High-level design . 124

ADV_HLD.3 Semiformal high-level design . 125
ADV_IMP Implementation representation . 126

ADV_IMP.2 Implementation of the TSF . 127
ADV_INT TSF internals . 127

ADV_INT.1 Modularity . 128
ADV_LLD Low-level design . 129

ADV_LLD.1 Descriptive low-level design . 130
ADV_RCR Representation correspondence . 131

ADV_RCR.2 Semiformal correspondence demonstration 131
AGD Guidance documents
AGD_ADM Administrator guidance . 132

AGD_ADM.1 Administrator guidance . 133
AGD_USR User guidance . 134

AGD_USR.1 User guidance . 134
ALC Life cycle support
ALC_DVS Development security . 135

ALC_DVS.1 Identification of security measures 135
ALC_LCD Life cycle definition . 136

ALC_LCD.2 Standardised life-cycle model . 137
ALC_TAT Tools and techniques . 137

ALC_TAT.2 Compliance with implementation standards 138
ATE Tests
ATE_COV Coverage . 139

ATE_COV.2 Complete coverage - rigorous . 139
ATE_DPT Depth . 140

ATE_DPT.3 Testing - low level design . 141
ATE_FUN Functional tests . 142

ATE_FUN.1 Functional testing . 142
ATE_IND Independent testing . 143

ATE_IND.2 Independent testing - sample . 144
AVA Vulnerability assessment
AVA_CCA Covert channel analysis . 145

AVA_CCA.1 Covert channel analysis . 146
AVA_MSU Misuse . 147

AVA_MSU.2 Misuse analysis - independent verification 147
AVA_SOF Strength of TOE security functions . 148

AVA_SOF.1 Strength of TOE security function evaluation 149
AVA_VLA Vulnerability analysis . 150

AVA_VLA.3 Relatively resistant . 150

EAL 6
Semiformally verified design and tested . 153

ACM Configuration management
ACM_AUT CM automation . 153

ACM_AUT.2 Complete CM automation . 153
ACM_CAP CM capabilities . 154

Table of contents CCEB-96/013_D

Page viii of xii Version 1.00 96/01/31

ACM_CAP.4 Advanced support . 155
ACM_SCP CM scope . 157

ACM_SCP.3 Development tools CM coverage . 158
ADO Delivery and operation
ADO_IGS Installation, generation, and start-up . 159

ADO_IGS.1 Installation, generation, and start-up procedures 159
ADV Development
ADV_FSP Functional specification . 160

ADV_FSP.5 Property specification by model interpretation 162
ADV_HLD High-level design . 163

ADV_HLD.4 Semiformal high-level explanation 164
ADV_IMP Implementation representation . 165

ADV_IMP.3 Structured implementation of the TSF 166
ADV_INT TSF internals . 167

ADV_INT.2 Layering . 167
ADV_LLD Low-level design . 169

ADV_LLD.2 Semiformal low-level design . 169
ADV_RCR Representation correspondence . 170

ADV_RCR.2 Semiformal correspondence demonstration 171
AGD Guidance documents
AGD_ADM Administrator guidance . 172

AGD_ADM.1 Administrator guidance . 172
AGD_USR User guidance . 174

AGD_USR.1 User guidance . 174
ALC Life cycle support
ALC_DVS Development security . 175

ALC_DVS.2 Sufficiency of security measures . 175
ALC_LCD Life cycle definition . 176

ALC_LCD.2 Standardised life-cycle model . 177
ALC_TAT Tools and techniques . 177

ALC_TAT.3 Compliance with implementation standards - all parts 178
ATE Tests
ATE_COV Coverage . 179

ATE_COV.3 Ordered testing . 179
ATE_DPT Depth . 180

ATE_DPT.3 Testing - low level design . 181
ATE_FUN Functional tests . 182

ATE_FUN.1 Functional testing . 182
ATE_IND Independent testing . 183

ATE_IND.2 Independent testing - sample . 184
AVA Vulnerability assessment
AVA_CCA Covert channel analysis . 185

AVA_CCA.2 Systematic covert channel analysis 186
AVA_MSU Misuse . 187

AVA_MSU.2 Misuse analysis - independent verification 187
AVA_SOF Strength of TOE security functions . 188

AVA_SOF.1 Strength of TOE security function evaluation 189
AVA_VLA Vulnerability analysis . 190

AVA_VLA.4 Highly resistant . 190

CCEB-96/013_D Table of contents

96/01/31 Version 1.00 Page ix of xii

EAL 7
Formally verified design and tested . 193

ACM Configuration management
ACM_AUT CM automation . 193

ACM_AUT.2 Complete CM automation . 193
ACM_CAP CM capabilities . 194

ACM_CAP.4 Advanced support . 195
ACM_SCP CM scope . 197

ACM_SCP.3 Development tools CM coverage . 198
ADO Delivery and operation
ADO_IGS Installation, generation, and start-up . 199

ADO_IGS.1 Installation, generation, and start-up procedures 199
ADV Development
ADV_FSP Functional specification . 200

ADV_FSP.6 Formal specification of the TSF properties 202
ADV_HLD High-level design . 203

ADV_HLD.5 Formal high-level design . 204
ADV_IMP Implementation representation . 205

ADV_IMP.3 Structured implementation of the TSF 206
ADV_INT TSF internals . 207

ADV_INT.3 Minimisation of Complexity . 207
ADV_LLD Low-level design . 209

ADV_LLD.2 Semiformal low-level design . 209
ADV_RCR Representation correspondence . 210

ADV_RCR.3 Formal correspondence demonstration 211
AGD Guidance documents
AGD_ADM Administrator guidance . 212

AGD_ADM.1 Administrator guidance . 213
AGD_USR User guidance . 214

AGD_USR.1 User guidance . 215
ALC Life cycle support
ALC_DVS Development security . 215

ALC_DVS.2 Sufficiency of security measures . 216
ALC_LCD Life cycle definition . 216

ALC_LCD.3 Measurable life-cycle model . 217
ALC_TAT Tools and techniques . 218

ALC_TAT.3 Compliance with implementation standards - all parts 218
ATE Tests
ATE_COV Coverage . 219

ATE_COV.3 Ordered testing . 220
ATE_DPT Depth . 221

ATE_DPT.4 Testing - implementation . 221
ATE_FUN Functional tests . 223

ATE_FUN.1 Functional testing . 223
ATE_IND Independent testing . 224

ATE_IND.3 Independent testing - complete . 224
AVA Vulnerability assessment
AVA_CCA Covert channel analysis . 226

Table of contents CCEB-96/013_D

Page x of xii Version 1.00 96/01/31

AVA_CCA.2 Systematic covert channel analysis 226
AVA_MSU Misuse . 227

AVA_MSU.2 Misuse analysis - independent verification 228
AVA_SOF Strength of TOE security functions . 229

AVA_SOF.1 Strength of TOE security function evaluation 230
AVA_VLA Vulnerability analysis . 230

AVA_VLA.4 Highly resistant . 231

CCEB-96/013_D List of tables

96/01/31 Version 1.00 Page xi of xii

List of tables

Table 2.1 - Evaluation Assurance Level Summary . 4
Table 2.2 - EAL1 . 6
Table 2.3 - EAL2 . 7
Table 2.4 - EAL3 . 9
Table 2.5 - EAL4 . 11
Table 2.6 - EAL5 . 13
Table 2.7 - EAL6 . 15
Table 2.8 - EAL7 . 17

List of tables CCEB-96/013_D

Page xii of xii Version 1.00 96/01/31

2CCEB-96/013_D

96/01/31 Version 1.00 Page 1 of 232

Chapter 1

Introduction

1 Part 3 of the CC defines assurance requirements in a hierarchical organisational
structure (i.e., classes, families, components, and elements), and groups those
requirements into Evaluation Assurance Levels (EALs) by reference. This
document defines the assurance requirements for each EAL explicitly.

2 Chapter 2 of this document summarises the EALs in a manner similar to the EAL
definitions in Part 3 of the CC. Chapter 3 goes on to represent, for each EAL, the
set of objectives, application notes, dependencies, and requirements in the classes,
families, and components that are included in the EAL.

3 This annex has been compiled almost exclusively by cross reference to the main
body of Part 3. In the event of errors which may have occurred with the cross
referencing, the component definitions in the main body take precendence.

1 - Introduction CCEB-96/013_D

Page 2 of 232 Version 1.00 96/01/31

18CCEB-96/013_D

96/01/31 Version 1.00 Page 3 of 232

Chapter 2

Assurance levels

4 The Evaluation Assurance Levels (EALs) provide a uniformly increasing scale
which balances the level of assurance obtained with the cost and feasibility of
acquiring that degree of assurance.

5 While the CC has adopted the evaluation-based criteria philosophy of its
predecessors, the EALs were developed within that philosophy but with a different
scope. The CC approach divides the concepts of assurance in a TOE at the end of
the evaluation and maintenance of that assurance during the operational use of the
TOE. The result being a departure from the evaluation levels of the various
predecessors of the CC inasmuch as some of the assurance families are not included
in any EAL.

6 In defining the EALs, an analysis was performed which concluded that every
assurance family, except “Delivery” and “Flaw remediation”, contributes directly
to the assurance that a TOE meets its security claims at the end of the evaluation.
As the assurance paradigm is based on assurance gained during evaluation, the
EALs are based on those assurance families. This is supported by the fact that
evaluators gain “real” assurance by the first hand application of assurance
mechanisms (e.g., analysis and testing of an existing design), while they can gain
only “theoretical” assurance for mechanisms applied after the evaluation (e.g., a
plan for delivery of the TOE). In other words, while such assurance mechanisms
can be evaluated to determine whether they can provide their claimed assurance, it
is not possible to produce practical evidence of their future application.

7 It is important to note that the “Delivery” and “Flaw remediation” families, as well
as some aspects of the other families (e.g., “CM capabilities”), can be evaluated and
provide meaningful and desired assurances. The assurance that they provide
contributes to maintaining that initial assurance determined by the evaluation of the
TOE. Note that while these families are not specifically included in any EAL, it is
expected and recommended that they be considered for augmentation of an EAL in
PPs and STs.

2 - Assurance levels CCEB-96/013_D

Page 4 of 232 Version 1.00 96/01/31

2.1 Evaluation assurance level (EAL) overview

8 Table 2.1 represents a summary of the EALs. The columns represent a
hierarchically ordered set of EALs, while the rows represent assurance families.
Each point in the resulting matrix identifies a specific assurance component where
applicable.

9 As outlined in the next section, seven hierarchically ordered evaluation assurance
levels that can be selected are defined in this CC for the rating of the TOE's
assurance. They are hierarchically ordered inasmuch as each EAL represents more
assurance than all lower EALs. The increase in assurance from EAL to EAL is

Assurance Class Assurance
Family

Assurance Components by
Evaluation Assurance Level

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

 Configuration
management

ACM_AUT 1 1 2 2
ACM_CAP 1 1 2 3 3 4 4
ACM_SCP 1 2 3 3 3

 Delivery and
operation

ADO_DEL
ADO_IGS 1 1 1 1 1 1

 Development

ADV_FSP 1 1 1 2 4 5 6
ADV_HLD 1 2 2 3 4 5
ADV_IMP 1 2 3 3
ADV_INT 1 2 3
ADV_LLD 1 1 2 2
ADV_RCR 1 1 1 1 2 2 3

 Guidance
documents

AGD_ADM 1 1 1 1 1 1 1
AGD_USR 1 1 1 1 1 1 1

 Life cycle
support

ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 2 2 3
ALC_TAT 1 2 3 3

 Tests

ATE_COV 1 2 2 2 3 3
ATE_DPT 1 2 2 3 3 4
ATE_FUN 1 1 1 1 1 1
ATE_IND 1 1 2 2 2 2 3

 Vulnerability
assessment

AVA_CCA 1 2 2
AVA_MSU 1 2 2 2 2
AVA_SOF 1 1 1 1 1 1
AVA_VLA 1 1 2 3 4 4

Table 2.1 -Evaluation Assurance Level Summary

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 5 of 232

accomplished bysubstituting a hierarchically higher assurance component from the
same assurance family (i.e., increasing rigour, scope, and/or depth) and from the
addition of assurance components from other assurance families (i.e., adding new
requirements).

10 These EALs consist of an appropriate combination of assurance components as
described in Chapter 2 of this Part. More precisely, each EAL includes no more than
one component of each assurance family and all assurance dependencies of every
component are addressed.

11 While the EALs are defined in the CC, it is possible to represent other combinations
of assurance. Specifically, the notion of “augmentation” allows the addition of
assurance components (from assurance families not already included in the EAL)
or the substitution of assurance components (with another hierarchically higher
assurance component in the same assurance family) to an EAL. Of the assurance
constructs defined in the CC, only EALs may be augmented. Furthermore, an EAL
may be altered only be augmentation. The notion of an “EAL minus a constituent
assurance component” is not recognised by the CC as a valid claim. Augmentation
carries with it the obligation on the part of the claimant to justify the utility and
added value of the added assurance component to the EAL.

2.2 Evaluation assurance level details

12 The following sections provide definitions of the EALs, highlighting differences
between the specific requirements and the prose characterisations of those
requirements using bold type.

2 - Assurance levels CCEB-96/013_D

Page 6 of 232 Version 1.00 96/01/31

2.2.1 Evaluation assurance level 1 (EAL1) - functionally tested

Objectives

13 EAL1 is the lowest assurance level for which evaluation is meaningful and
economically justified. EAL1 is intended to detect obvious errors for a minimum
outlay but is unlikely to result in the detection of other than very obvious security
weaknesses.

14 EAL1 is applicable in circumstances where those responsible for user data may
wish or be obliged to seek independent assurances in the IT security but the risks to
security are not viewed as serious. Under these circumstances, an EAL1 rating
would be of value to support the contention that due care had been exercised with
respect to personal or similar information.

Assurance components

15 EAL1 (see Table 2.2) provides a minimum level of assurance by an analysis of
the security functions using a functional and interface specification of the
TOE, to understand the security behaviour.

16 The analysis is supported by independent testing of each of the security
functions.

17 This EAL, nonetheless, represents a meaningful increase over an un-evaluated IT
product or system (TOE).

Assurance class Assurance components
 Configuration management ACM_CAP.1 Minimal support

 Development
ADV_FSP.1 TOE and security policy
ADV_RCR.1 Informal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Tests ATE_IND.1 Independent testing - conformance

Table 2.2 -EAL1

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 7 of 232

2.2.2 Evaluation assurance level 2 (EAL2) - structurally tested

Objectives

18 EAL2 is the highest assurance level that can be used without imposing other than
minimal additional tasks upon the developer. If the developer applies reasonable
standards of care to the development, EAL2 may be feasible without developer
involvement other than support for security functional testing.

19 EAL2 is therefore applicable in those circumstances where developers or users
require a low to moderate level of independently assured security in the absence of
ready availability of the complete development record. Such a situation may arise
when securing legacy systems or where access to the developer may be limited.

Assurance components

20 EAL2 (see Table 2.3) provides assurance by an analysis of the security functions
using a functional and interface specificationand the high-level design of the
subsystemsof the TOE, to understand the security behaviour.

21 The analysis is supported by independent testing of each of the security functions,
evidence of developer “black box” testing, and evidence of a developer search
for obvious vulnerabilities (e.g., those in the public domain).

22 This EAL represents a meaningful increase in assurance from EAL1 by requiring
developer testing, a vulnerability analysis, and independent testing based upon
more detailed TOE specifications.

Assurance class Assurance components
 Configuration management ACM_CAP.1 Minimal support

 Delivery and operation ADO_IGS.1 Installation, generation, and start-up procedures

 Development
ADV_FSP.1 TOE and security policy
ADV_HLD.1 Descriptive high-level design
ADV_RCR.1 Informal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Tests

ATE_COV.1 Complete coverage - informal
ATE_DPT.1 Testing - functional specification
ATE_FUN.1 Functional testing
ATE_IND.1 Independent testing - conformance

 Vulnerability assessment
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.1 Developer vulnerability analysis

Table 2.3 -EAL2

2 - Assurance levels CCEB-96/013_D

Page 8 of 232 Version 1.00 96/01/31

2.2.3 Evaluation assurance level 3 (EAL3) - methodically tested and
checked

Objectives

23 EAL3 permits a conscientious developer to gain maximum assurance from positive
security engineering at the design stage without substantial alteration of existing
sound development practices.

24 EAL3 is therefore applicable in those circumstances where developers or users
require a moderate level of independently assured security and require a thorough
investigation of the product and its development without incurring substantial re-
engineering costs.

Assurance components

25 EAL3 (see Table 2.4) provides assurance by an analysis of the security functions
using a functional and interface specification and the high-level design of the
subsystems of the TOE, to understand the security behaviour.

26 The analysis is supported by independent testing of the security functions, evidence
of developer “gray box” testing,selective independent confirmation of the
developer test results, and evidence of a developer search for obvious
vulnerabilities (e.g., those in the public domain).

27 EAL3 also provides added assurance through the addition of development
environment controls and TOE configuration management.

28 This EAL represents a meaningful increase in assurance from EAL2 by requiring
more complete testing coverage of the security functions and mechanisms and/or
procedures that provide some confidence that the TOE will not be tampered with
during development.

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 9 of 232

Assurance class Assurance components

 Configuration management
ACM_CAP.2 Authorisation controls
ACM_SCP.1 Minimal CM coverage

 Delivery and operation ADO_IGS.1 Installation, generation, and start-up procedures

 Development
ADV_FSP.1 TOE and security policy
ADV_HLD.2 Security enforcing high-level design
ADV_RCR.1 Informal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Life cycle support ALC_DVS.1 Identification of security measures

 Tests

ATE_COV.2 Complete coverage - rigorous
ATE_DPT.2 Testing - high level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

 Vulnerability assessment
AVA_MSU.1 Misuse analysis - obvious flaws
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.1 Developer vulnerability analysis

Table 2.4 -EAL3

2 - Assurance levels CCEB-96/013_D

Page 10 of 232 Version 1.00 96/01/31

2.2.4 Evaluation assurance level 4 (EAL4) - methodically designed, tested,
and reviewed

Objectives

29 EAL4 permits a developer to gain maximum assurance from positive security
engineering based on good commercial development practices which, though
rigorous, do not require substantial specialist knowledge, skills, and other
resources. EAL4 is the highest level which it is likely to be economically feasible
to retrofit to an existing product line.

30 EAL4 is therefore applicable in those circumstances where developers or users
require a moderate to high level of independently assured security in conventional
commodity products and are prepared to incur additional security specific
engineering costs.

Assurance components

31 EAL4 (see Table 2.5) provides assurance by an analysis of the security functions
using a functional and interface specification, the high-level design of the
subsystems, the low-level design of the modules of the TOE, and a subset of the
implementation, to understand the security behaviour.

32 The analysis is supported by independent testing of the security functions, evidence
of developer “gray box” testing, selective independent confirmation of the
developer test results, evidence of a developer search for obvious vulnerabilities
(e.g., those in the public domain), and an independent search for obvious
vulnerabilities.

33 EAL4 also provides assurance through theuse of development environment
controls andadditional TOE configuration managementincluding automation.

34 This EAL represents a meaningful increase in assurance from EAL3 by requiring
more design description, a subset of the implementation, and improved mechanisms
and/or procedures that provide confidence that the TOE will not be tampered with
during development.

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 11 of 232

Assurance class Assurance components

 Configuration management
ACM_AUT.1 Partial CM automation
ACM_CAP.3 Generation support and acceptance procedures
ACM_SCP.2 Problem tracking CM coverage

 Delivery and operation ADO_IGS.1 Installation, generation, and start-up procedures

 Development

ADV_FSP.2 Informal security policy model
ADV_HLD.2 Security enforcing high-level design
ADV_IMP.1 Subset of the implementation of the TSF
ADV_LLD.1 Descriptive low-level design
ADV_RCR.1 Informal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Life cycle support
ALC_DVS.1 Identification of security measures
ALC_LCD.1 Developer defined life-cycle model
ALC_TAT.1 Well defined development tools

 Tests

ATE_COV.2 Complete coverage - rigorous
ATE_DPT.2 Testing - high level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

 Vulnerability assessment
AVA_MSU.2 Misuse analysis - independent verification
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.2 Independent vulnerability analysis

Table 2.5 -EAL4

2 - Assurance levels CCEB-96/013_D

Page 12 of 232 Version 1.00 96/01/31

2.2.5 Evaluation assurance level 5 (EAL5) - semiformally designed and
tested

Objectives

35 EAL5 permits a developer to gain maximum assurance from security engineering
based upon rigorous commercial development practices supported by moderate
application of specialist security engineering techniques. Such a product will be
designed and developed with the intent of achieving EAL5 assurance. It is likely
that the additional costs attributable to the EAL5 requirements relative to rigorous
development without the application of specialised techniques will not be
excessive.

36 EAL5 is therefore applicable in those circumstances where developers or users
require a high level of independently assured security in a planned development and
require a rigorous development approach without incurring unreasonable costs
attributable to specialist security engineering techniques.

Assurance components

37 EAL5 (see Table 2.6) provides assurance by an analysis of the security functions
using a functional and interface specification, the high-level design of the
subsystems, the low-level design of the modules of the TOE, andall of the
implementation, to understand the security behaviour. Assurance is additionally
gained through a formal model and a semiformal presentation of the
functional specification and high-level design and a semiformal demonstration
of correspondence between them.

38 The analysis is supported by independent testing of the security functions, evidence
of developer “gray box” testing, selective independent confirmation of the
developer test results, evidence of a developer search for obvious vulnerabilities
(e.g., those in the public domain), and an independent search forvulnerabilities
ensuring relative resistance to penetration attack. The analysis also includes a
search for covert channels, when applicable, and is supported by requiring a
modular TOE design.

39 EAL5 also provides assurance through the use of a development environment
controls, and comprehensive TOE configuration management including
automation.

40 This EAL represents a meaningful increase in assurance from EAL4 by requiring
semiformal design descriptions, the entire implementation, a more structured (and
hence analysable) architecture, covert channel analysis, and improved mechanisms
and/or procedures that provide confidence that the TOE will not be tampered with
during development.

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 13 of 232

Assurance class Assurance components

 Configuration management
ACM_AUT.1 Partial CM automation
ACM_CAP.3 Generation support and acceptance procedures
ACM_SCP.3 Development tools CM coverage

 Delivery and operation ADO_IGS.1 Installation, generation, and start-up procedures

 Development

ADV_FSP.4 Formal security policy model
ADV_HLD.3 Semiformal high-level design
ADV_IMP.2 Implementation of the TSF
ADV_INT.1 Modularity
ADV_LLD.1 Descriptive low-level design
ADV_RCR.2 Semiformal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Life cycle support
ALC_DVS.1 Identification of security measures
ALC_LCD.2 Standardised life-cycle model
ALC_TAT.2 Compliance with implementation standards

 Tests

ATE_COV.2 Complete coverage - rigorous
ATE_DPT.3 Testing - low level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

 Vulnerability assessment

AVA_CCA.1 Covert channel analysis
AVA_MSU.2 Misuse analysis - independent verification
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.3 Relatively resistant

Table 2.6 -EAL5

2 - Assurance levels CCEB-96/013_D

Page 14 of 232 Version 1.00 96/01/31

2.2.6 Evaluation assurance level 6 (EAL6) - semiformally verified design and
tested

Objectives

41 EAL6 permits developers to gain high assurance from application of security
engineering techniques to a rigorous development environment in order to produce
a premium product for protecting high value assets against significant risks.

42 EAL6 is therefore applicable to the development of specialist security products for
application in high risk situations where the value of the protected assets justifies
the additional costs.

Assurance components

43 EAL6 (see Table 2.7) provides assurance by an analysis of the security functions
using a functional and interface specification, the high-level design of the
subsystems, the low-level design of the modules of the TOE, anda structured
presentation of the implementation, to understand the security behaviour.
Assurance is additionally gained through a formal model, a semiformal
presentation of the functional specification, high-level design, and low-level
design and a semiformal demonstration of correspondence between them.

44 The analysis is supported by independent testing of the security functions, evidence
of developer “gray box” testing, selective independent confirmation of the
developer test results, evidence of a developer search for obvious vulnerabilities
(e.g., those in the public domain), and an independent search for vulnerabilities
ensuring high resistance to penetration attack. The analysis also includes a
systematic search for covert channels, when applicable, and is supported by
requiring a modularand layered TOE design.

45 EAL6 also provides assurance through the use of astructured development
process, development environment controls, and comprehensive TOE
configuration management includingcomplete automation.

46 This EAL represents a meaningful increase in assurance from EAL5 by requiring
more comprehensive analysis, a structured representation of the implementation,
more architectural structure (e.g., layering), more comprehensive independent
vulnerability analysis, systematic covert channel identification, and improved
configuration management and development environment controls.

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 15 of 232

Assurance class Assurance components

 Configuration management
ACM_AUT.2 Complete CM automation
ACM_CAP.4 Advanced support
ACM_SCP.3 Development tools CM coverage

 Delivery and operation ADO_IGS.1 Installation, generation, and start-up procedures

 Development

ADV_FSP.5 Property specification by model interpretation
ADV_HLD.4 Semiformal high-level explanation
ADV_IMP.3 Structured implementation of the TSF
ADV_INT.2 Layering
ADV_LLD.2 Semiformal low-level design
ADV_RCR.2 Semiformal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Life cycle support
ALC_DVS.2 Sufficiency of security measures
ALC_LCD.2 Standardised life-cycle model
ALC_TAT.3 Compliance with implementation standards - all parts

 Tests

ATE_COV.3 Ordered testing
ATE_DPT.3 Testing - low level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

 Vulnerability assessment

AVA_CCA.2 Systematic covert channel analysis
AVA_MSU.2 Misuse analysis - independent verification
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.4 Highly resistant

Table 2.7 -EAL6

2 - Assurance levels CCEB-96/013_D

Page 16 of 232 Version 1.00 96/01/31

2.2.7 Evaluation assurance level 7 (EAL7) - formally verified design and
tested

Objectives

47 EAL7 represents an achievable upper bound on evaluation assurance for practically
useful products and should only be considered for experimental application to all
but conceptually simple and well understood products.

48 EAL7 is therefore applicable to the development of specialist security products for
application in extremely high risk situations and/or where the high value of the
assets justifies the higher costs. Practical application of EAL7 is currently limited
to products with tightly focused security functionality which is amenable to formal
analysis.

Assurance components

49 EAL7 (see Table 2.8) provides assurance by an analysis of the security functions
using a functional and interface specification, the high-level design of the
subsystems, the low-level design of the modules of the TOE, and a structured
presentation of the implementation, to understand the security behaviour.
Assurance is additionally gained through a formal model, a formal presentation
of the functional specification and high-level design, a semiformal presentation
of the low-level design, andformal and semiformal demonstration of
correspondence between them, as appropriate.

50 The analysis is supported by independent testing of the security functions, evidence
of developer “white box” testing, complete independent confirmation of the
developer test results, evidence of a developer search for obvious vulnerabilities
(e.g., those in the public domain), and an independent search for vulnerabilities
ensuring high resistance to penetration attack. The analysis also includes a
systematic search for covert channels, when applicable, and is supported by
requiring a modular, layered,and simple TOE design.

51 EAL7 also provides assurance through the use of a structured development process,
development environment controls, and comprehensive TOE configuration
management including complete automation.

52 This EAL represents a meaningful increase in assurance from EAL6 by requiring
more comprehensive analysis using formal representations and formal
correspondence, comprehensive testing, and exhaustive covert channel analysis.

CCEB-96/013_D 2 - Assurance levels

96/01/31 Version 1.00 Page 17 of 232

Assurance class Assurance components

 Configuration management
ACM_AUT.2 Complete CM automation
ACM_CAP.4 Advanced support
ACM_SCP.3 Development tools CM coverage

 Delivery and operation ADO_IGS.1 Installation, generation, and start-up procedures

 Development

ADV_FSP.6 Formal specification of the TSF properties
ADV_HLD.5 Formal high-level design
ADV_IMP.3 Structured implementation of the TSF
ADV_INT.3 Minimisation of Complexity
ADV_LLD.2 Semiformal low-level design
ADV_RCR.3 Formal correspondence demonstration

 Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

 Life cycle support
ALC_DVS.2 Sufficiency of security measures
ALC_LCD.3 Measurable life-cycle model
ALC_TAT.3 Compliance with implementation standards - all parts

 Tests

ATE_COV.3 Ordered testing
ATE_DPT.4 Testing - implementation
ATE_FUN.1 Functional testing
ATE_IND.3 Independent testing - complete

 Vulnerability assessment

AVA_CCA.2 Systematic covert channel analysis
AVA_MSU.2 Misuse analysis - independent verification
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.4 Highly resistant

Table 2.8 -EAL7

2 - Assurance levels CCEB-96/013_D

Page 18 of 232 Version 1.00 96/01/31

20CCEB-96/013_D

96/01/31 Version 1.00 Page 19 of 232

Chapter 3

Detailed EAL requirements

53 The following sections fully expand the requirements for each EAL. The
requirements are exactly as they appear in Part 3 of the CC, except that:

a) only the relevant classes, families, and components are included for each
EAL;

b) component levelling is not represented; and

c) requirement highlighting, to indicate differences from the preceding EAL,
occurs only at the granularity of an “element”, as opposed to individual
word changes.

3 - Detailed EAL requirements CCEB-96/013_D

Page 20 of 232 Version 1.00 96/01/31

32CCEB-96/013_D

96/01/31 Version 1.00 Page 21 of 232

EAL 1

Functionally tested

ACM Configuration management

54 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_CAP CM capabilities

Objectives

55 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

56 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

57 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

58 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The

EAL 1 - Functionally tested CCEB-96/013_D

Page 22 of 232 Version 1.00 96/01/31

evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

59 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

60 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.1 Minimal support

Objectives

61 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

Dependencies:

No dependencies.

Developer action elements:

ACM_CAP.1.1D The developer shall use a CM system.

ACM_CAP.1.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.1.1C The CM documentation shall include a configuration list.

ACM_CAP.1.2C The configuration list shall describe the configuration items that comprise the
TOE.

ACM_CAP.1.3C The CM documentation shall describe the method used to uniquely identify
the TOE configuration items.

Evaluator action elements:

ACM_CAP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

CCEB-96/013_D EAL 1 - Functionally tested

96/01/31 Version 1.00 Page 23 of 232

ADV Development

62 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for
a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

63 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

ADV_FSP Functional specification

Objectives

64 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all
the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

65 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

66 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would
allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

67 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of

EAL 1 - Functionally tested CCEB-96/013_D

Page 24 of 232 Version 1.00 96/01/31

another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

68 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

69 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the
correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

70 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP
model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

71 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to
be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

ADV_FSP.1 TOE and security policy

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

CCEB-96/013_D EAL 1 - Functionally tested

96/01/31 Version 1.00 Page 25 of 232

Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

ADV_FSP.1.2D The developer shall provide a TSP.

Content and presentation of evidence elements:

ADV_FSP.1.1C The functional specification shall describe the TSF using an informal style.

ADV_FSP.1.2C The functional specification shall include an informal presentation of syntax
and semantics of all external TSF interfaces.

ADV_FSP.1.3C The functional specification shall include evidence that demonstrates that the
TSF is completely represented.

Evaluator action elements:

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_FSP.1.2E The evaluator shall determine that the functional specification is consistent
with the TSP.

ADV_FSP.1.3E The evaluator shall determine if the functional requirements in the ST are
addressed by the representation of the TSF.

ADV_RCR Representation correspondence

Objectives

72 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

Application notes

73 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

74 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and

EAL 1 - Functionally tested CCEB-96/013_D

Page 26 of 232 Version 1.00 96/01/31

then make a determination as to whether the functional requirements in the ST have
been satisfied.

75 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

ADV_RCR.1 Informal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.1.1D The developer shall provide evidence that the least abstract TSF
representation provided is an accurate, consistent, and complete instantiation
of the functional requirements expressed in the ST.

Content and presentation of evidence elements:

ADV_RCR.1.1C For each adjacent pair of TSF representations, the evidence shall demonstrate
that all parts of the more abstract representation are refined in the less
abstract representation.

ADV_RCR.1.2C For each adjacent pair of TSF representations, the demonstration of
correspondence between the representations may be informal.

Evaluator action elements:

ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_RCR.1.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation
provided to ensure accuracy, consistency, and completeness.

AGD Guidance documents

76 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

CCEB-96/013_D EAL 1 - Functionally tested

96/01/31 Version 1.00 Page 27 of 232

AGD_ADM Administrator guidance

Objectives

77 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

Application notes

78 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

79 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant
to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance
requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a
secure manner.

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and
privileges that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and
effective use of the security functions within the TSF.

EAL 1 - Functionally tested CCEB-96/013_D

Page 28 of 232 Version 1.00 96/01/31

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters,
and those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security
functions interact.

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to
configure the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may
be used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of
procedures relevant to the administration of security.

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents
supplied for evaluation.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

AGD_USR User guidance

Objectives

80 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

81 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

CCEB-96/013_D EAL 1 - Functionally tested

96/01/31 Version 1.00 Page 29 of 232

Application notes

82 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

83 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions
provided by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that
should be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered
for evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE Tests

84 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)

EAL 1 - Functionally tested CCEB-96/013_D

Page 30 of 232 Version 1.00 96/01/31

(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional
requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

85 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

86 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

87 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_IND Independent testing

Objectives

88 The objective is to demonstrate that the security functions perform as specified.

89 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

90 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

91 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.1 Independent testing - conformance

Objectives

92 In this component, the objective is to demonstrate that the security functions
perform as specified.

CCEB-96/013_D EAL 1 - Functionally tested

96/01/31 Version 1.00 Page 31 of 232

Application notes

93 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

94 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

Developer action elements:

ATE_IND.1.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.1.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

EAL 1 - Functionally tested CCEB-96/013_D

Page 32 of 232 Version 1.00 96/01/31

54CCEB-96/013_D

96/01/31 Version 1.00 Page 33 of 232

EAL 2

Structurally tested

ACM Configuration management

95 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_CAP CM capabilities

Objectives

96 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

97 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

98 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

99 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The

EAL 2 - Structurally tested CCEB-96/013_D

Page 34 of 232 Version 1.00 96/01/31

evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

100 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

101 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.1 Minimal support

Objectives

102 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

Dependencies:

No dependencies.

Developer action elements:

ACM_CAP.1.1D The developer shall use a CM system.

ACM_CAP.1.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.1.1C The CM documentation shall include a configuration list.

ACM_CAP.1.2C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.1.3C The CM documentation shall describe the method used to uniquely identify the
TOE configuration items.

Evaluator action elements:

ACM_CAP.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 35 of 232

ADO Delivery and operation

103 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

ADO_IGS Installation, generation, and start-up

Objectives

104 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started in a secure manner as intended by
the developer.

Application notes

105 The generation requirements are applicable only to TOEs that provide the ability to
generate an operational TOE from source or object code.

106 The installation, generation, and start-up procedures may exist as a separate
document, but would typically be grouped with other administrative guidance.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures to be used for the secure
installation, generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV Development

107 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for

EAL 2 - Structurally tested CCEB-96/013_D

Page 36 of 232 Version 1.00 96/01/31

a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

108 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

ADV_FSP Functional specification

Objectives

109 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all
the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

110 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

111 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would
allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

112 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of
another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 37 of 232

113 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

114 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the
correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

115 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP
model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

116 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to
be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

ADV_FSP.1 TOE and security policy

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

ADV_FSP.1.2D The developer shall provide a TSP.

EAL 2 - Structurally tested CCEB-96/013_D

Page 38 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

ADV_FSP.1.1C The functional specification shall describe the TSF using an informal style.

ADV_FSP.1.2C The functional specification shall include an informal presentation of syntax and
semantics of all external TSF interfaces.

ADV_FSP.1.3C The functional specification shall include evidence that demonstrates that the TSF
is completely represented.

Evaluator action elements:

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.1.2E The evaluator shall determine that the functional specification is consistent with the
TSP.

ADV_FSP.1.3E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_HLD High-level design

Objectives

117 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e., subsystems) and relates these units to the functions that they
contain. The high-level design provides assurance that the TOE provides an
architecture appropriate to implement the claimed functional requirements.

118 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function and
identifies the security functions enforced by the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Application notes

119 In addition to the content indicated in the following requirements, the high-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

120 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using
“layers”, “domains”, or “servers”.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 39 of 232

121 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the high-level design. In the course of
the high-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

122 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

123 The term “security functionality” is used to represent operations that a subsystem
performs that have some effect on the security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

124 The term “TSP enforcing subsystems” refers to a subsystem that contributes to the
enforcement of the TSP.

ADV_HLD.1 Descriptive high-level design

Dependencies:

 ADV_FSP.1 TOE and security policy

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_HLD.1.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.1.1C The presentation of the high-level design shall be informal.

ADV_HLD.1.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.1.3C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

EAL 2 - Structurally tested CCEB-96/013_D

Page 40 of 232 Version 1.00 96/01/31

ADV_HLD.1.4C The high-level design shall identify the interfaces of the subsystems of the TSF.

ADV_HLD.1.5C The high-level design shall identify any underlying hardware, firmware, and/
or software required by the TSF with a presentation of the functions provided
by the supporting protection mechanisms implemented in that hardware,
firmware, or software.

Evaluator action elements:

ADV_HLD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.1.2E The evaluator shall determine if the functional requirements in the ST are
addressed by the representation of the TSF.

ADV_RCR Representation correspondence

Objectives

125 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

Application notes

126 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

127 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and
then make a determination as to whether the functional requirements in the ST have
been satisfied.

128 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 41 of 232

ADV_RCR.1 Informal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.1.1D The developer shall provide evidence that the least abstract TSF representation
provided is an accurate, consistent, and complete instantiation of the functional
requirements expressed in the ST.

Content and presentation of evidence elements:

ADV_RCR.1.1C For each adjacent pair of TSF representations, the evidence shall demonstrate that
all parts of the more abstract representation are refined in the less abstract
representation.

ADV_RCR.1.2C For each adjacent pair of TSF representations, the demonstration of correspondence
between the representations may be informal.

Evaluator action elements:

ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.1.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation provided to
ensure accuracy, consistency, and completeness.

AGD Guidance documents

129 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

AGD_ADM Administrator guidance

Objectives

130 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform

EAL 2 - Structurally tested CCEB-96/013_D

Page 42 of 232 Version 1.00 96/01/31

security-critical actions and those functions that provide security-critical
information.

Application notes

131 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

132 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant
to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance
requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a secure
manner.

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and privileges
that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and effective
use of the security functions within the TSF.

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters, and
those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 43 of 232

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security functions
interact.

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to configure
the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may be
used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of procedures
relevant to the administration of security.

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents supplied
for evaluation.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

AGD_USR User guidance

Objectives

133 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

134 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

Application notes

135 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

136 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

EAL 2 - Structurally tested CCEB-96/013_D

Page 44 of 232 Version 1.00 96/01/31

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions provided
by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that should
be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered for
evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE Tests

137 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional
requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

138 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 45 of 232

139 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

140 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_COV Coverage

Objectives

141 This family addresses those aspects of testing that deal with completeness of
testing. That is, it addresses the extent to which the TOE security functions are
tested, whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates as specified, and whether or not the order in which testing proceeds
correctly accounts for functional dependencies between the portions of the TOE
being tested.

Application notes

142 The specific documentation required by the coverage components will be
determined, in most cases, by the documentation stipulated in the level of
ATE_FUN that is specified. However, the PP/ST author will need to give
consideration to the proper set of test evidence and documentation required.

ATE_COV.1 Complete coverage - informal

Objectives

143 In this component, the objective is that testing completely address the security
functions.

Application notes

144 While the testing objective is to completely cover the TSF, there is no more than
informal explanation to support this assertion.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.1.1D The developer shall provide an analysis of the test coverage.

EAL 2 - Structurally tested CCEB-96/013_D

Page 46 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

ATE_COV.1.1C The analysis of the test coverage shall demonstrate that the tests identified in
the test documentation cover the TSF.

Evaluator action elements:

ATE_COV.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_DPT Depth

Objectives

145 The components in this family deal with the level of detail to which the TOE is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

146 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internals of the TOE, are more likely to discover any malicious
code that has been inserted.

Application notes

147 The specific amount and type of documentation and evidence will, in general, be
determined by that required by level of ATE_FUN selected. However, the PP/ST
author will need to give consideration to the proper set of test evidence and
documentation required.

ATE_DPT.1 Testing - functional specification

Objectives

148 The functional specification of a TOE provides a high level description of the
external workings of the TSF. Testing at the level of the functional specification, in
order to demonstrate the presence of any flaws, provides assurance that the TSF
functional specification has been correctly realised.

Application notes

149 The functional specification representation is used to express the notion of the most
abstract representation of the TSF.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 47 of 232

Developer action elements:

ATE_DPT.1.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.1.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TOE operates in
accordance with the functional specification of the TSF.

Evaluator action elements:

ATE_DPT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_FUN Functional tests

Objectives

150 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the functional requirements of its PP/ST. Functional testing provides
assurance that the TSF satisfies at least the security functional requirements,
although it cannot establish that the TSF does no more than what was specified. The
family “Functional tests” is focused on the type and amount of documentation or
support tools required, and what is to be demonstrated through testing.

151 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

Application notes

152 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results is
derived from the test inputs.

153 The developer shall eliminate all security relevant flaws discovered during testing.

154 The developer shall test the TSF to determine that no new security relevant flaws
have been introduced as a result of eliminating discovered security relevant flaws.

ATE_FUN.1 Functional testing

Objectives

155 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

EAL 2 - Structurally tested CCEB-96/013_D

Page 48 of 232 Version 1.00 96/01/31

Dependencies:

ATE_COV.1 Complete coverage - informal

ATE_DPT.1 Testing - functional specification

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions,
and test results.

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the
goal of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and
describe the scenarios for testing each security function.

ATE_FUN.1.4C The test results in the test documentation shall show the expected results of
each test.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate
that each security function operates as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND Independent testing

Objectives

156 The objective is to demonstrate that the security functions perform as specified.

157 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

158 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 49 of 232

159 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.1 Independent testing - conformance

Objectives

160 In this component, the objective is to demonstrate that the security functions
perform as specified.

Application notes

161 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

162 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

Developer action elements:

ATE_IND.1.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.1.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

AVA Vulnerability assessment

163 The class “Vulnerability assessment” encompasses four families: covert channel
analysis (AVA_CCA), misuse (AVA_MSU), strength of TOE security functions

EAL 2 - Structurally tested CCEB-96/013_D

Page 50 of 232 Version 1.00 96/01/31

(AVA_SOF) and vulnerability analysis (AVA_VLA). The class addresses the
existence of exploitable covert channels, the misuse or incorrect configuration of
the TOE, the ability for all critical security mechanisms to withstand direct attack
and the definition and assessment of penetration tests to exploit vulnerabilities
introduced in the development or the operation of the TOE.

AVA_SOF Strength of TOE security functions

Objectives

164 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
functions claim.

Application notes

165 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

166 The strength of TOE security functions evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

167 The strength of a function is rated ‘basic’ if the analysis shows that the function
provides adequate protection against unintended or casual breach of TOE security
by attackers possessing a low attack potential.

168 The strength of a function is rated ‘medium’ if the analysis shows that the function
provides adequate protection against attackers possessing a moderate attack
potential.

169 The strength of a function is rated ‘high’ if the analysis shows that the function
provides adequate protection against attackers possessing a high attack potential.

170 The attack potential is derived from the attacker’s expertise, opportunities,
resources, and motivation.

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 51 of 232

Developer action elements:

AVA_SOF.1.1D The developer shall identify all TOE security mechanisms for which a strength
of TOE security function analysis is appropriate.

AVA_SOF.1.2D The developer shall perform a strength of TOE security function analysis for
each identified mechanism.

Content and presentation of evidence elements:

AVA_SOF.1.1C The strength of TOE security function analysis shall determine the impact of
the identified TOE security mechanisms on the ability of the TOE security
functions to counter the threats.

AVA_SOF.1.2C The strength of TOE security function analysis shall demonstrate that the
identified strength of the security functions is consistent with the security
objectives of the TOE.

AVA_SOF.1.3C Each strength claim shall be either basic, medium, or high.

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that all TOE security mechanisms requiring a
strength analysis have been identified.

AVA_SOF.1.3E The evaluator shall confirm that the strength claims are correct.

AVA_VLA Vulnerability analysis

Objectives

171 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or e.g., by flaw hypotheses, could allow malicious users to violate the TSP.

172 Vulnerability analysis deals with the threats that a malicious user will be able to
discover flaws that will allow access to resources (e.g., data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

Application notes

173 The vulnerability analysis should consider the contents of all the TOE deliverables
for the targeted evaluation assurance level.

EAL 2 - Structurally tested CCEB-96/013_D

Page 52 of 232 Version 1.00 96/01/31

174 Obvious vulnerabilities are those that allow common attacks or those that might be
suggested by the TOE interface description. Obvious vulnerabilities are those in the
public domain, details of which should be known to a developer or available from
an evaluation oversight body.

175 The evidence identifies all the TOE documentation upon which the search for flaws
was based.

AVA_VLA.1 Developer vulnerability analysis

Objectives

176 A vulnerability analysis is performed by the developer to ascertain the presence of
“obvious” security vulnerabilities.

177 The objective is to confirm that no identified security vulnerabilities can be
exploited in the intended environment for the TOE.

Application notes

178 Obvious vulnerabilities are those which are open to exploitation which requires a
minimum of understanding of the TOE, skill, technical sophistication, and
resources.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.1.1D The developer shall perform and document an analysis of the TOE
deliverables searching for obvious ways in which a user can violate the TSP.

AVA_VLA.1.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.1.1C The evidence shall show, for each vulnerability, that the vulnerability cannot
be exploited in the intended environment for the TOE.

Evaluator action elements:

AVA_VLA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

CCEB-96/013_D EAL 2 - Structurally tested

96/01/31 Version 1.00 Page 53 of 232

AVA_VLA.1.2E The evaluator shall conduct penetration testing, based on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

EAL 2 - Structurally tested CCEB-96/013_D

Page 54 of 232 Version 1.00 96/01/31

80CCEB-96/013_D

96/01/31 Version 1.00 Page 55 of 232

EAL 3

Methodically tested and checked

ACM Configuration management

179 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_CAP CM capabilities

Objectives

180 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

181 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

182 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

183 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 56 of 232 Version 1.00 96/01/31

evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

184 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

185 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.2 Authorisation controls

Objectives

186 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

187 Assurance of TOE integrity may be gained by controlling the ability to modify the
TOE configuration items. Ensuring proper functionality and use of the CM system
also provides assurance that the CM system is correctly enforcing the integrity of
the TOE.

Dependencies:

ACM_SCP.1 Minimal CM coverage

ALC_DVS.1 Identification of security measures

Developer action elements:

ACM_CAP.2.1D The developer shall use a CM system.

ACM_CAP.2.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.2.1C The CM documentation shall include a configuration list and a CM plan.

ACM_CAP.2.2C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.2.3C The CM documentation shall describe the method used to uniquely identify the
TOE configuration items.

ACM_CAP.2.4C The CM plan shall describe how the CM system is used.

ACM_CAP.2.5C The CM documentation shall provide evidence that the CM system is working
properly.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 57 of 232

ACM_CAP.2.6C The CM documentation shall provide evidence that all configuration items
have been and are being effectively maintained under the CM system.

ACM_CAP.2.7C The CM system shall ensure that only authorised changes are made to the TOE
configuration items.

Evaluator action elements:

ACM_CAP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_SCP CM scope

Objectives

188 The objective is to ensure that all necessary TOE configuration items are tracked by
the CM system. This helps to ensure that the integrity of these configuration items
is protected through the capabilities of the CM system.

189 The objectives of this family include the following:

a) ensuring that the TOE implementation representation is tracked;

b) ensuring that all necessary documentation, including problem reports, are
tracked during development and operation;

c) ensuring that configuration options (e.g. compiler switches) are tracked; and

d) ensuring that development tools are tracked.

Application notes

190 For ACM_SCP.1 and the higher components, there is a requirement that the TOE
implementation representation be tracked by the CM system. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

191 For ACM_SCP.2 and ACM_SCP.3, there is a requirement that security flaws be
tracked by the CM system. This requires that information regarding previous
security flaws and their resolution be maintained, as well as details regarding
current security flaws.

192 For ACM_SCP.3, there is a requirement that development tools and other related
information be tracked by the CM system. Examples of development tools are
programming languages and compilers. Information pertaining to TOE generation

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 58 of 232 Version 1.00 96/01/31

items (such as compiler options, installation/generation options, and build options)
is an example of information relating to development tools.

ACM_SCP.1 Minimal CM coverage

Objectives

193 A CM system can control changes only to those items that have been placed under
CM. At a minimum, the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation should be placed under CM.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_SCP.1.1D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_SCP.1.1C As a minimum, the following shall be tracked by the CM system: the TOE
implementation representation, design documentation, test documentation,
user documentation, administrator documentation, and CM documentation.

ACM_SCP.1.2C The CM documentation shall describe how configuration items are tracked by
the CM system.

Evaluator action elements:

ACM_SCP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO Delivery and operation

194 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

ADO_IGS Installation, generation, and start-up

Objectives

195 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started in a secure manner as intended by
the developer.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 59 of 232

Application notes

196 The generation requirements are applicable only to TOEs that provide the ability to
generate an operational TOE from source or object code.

197 The installation, generation, and start-up procedures may exist as a separate
document, but would typically be grouped with other administrative guidance.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures to be used for the secure installation,
generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV Development

198 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for
a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

199 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 60 of 232 Version 1.00 96/01/31

ADV_FSP Functional specification

Objectives

200 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all
the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

201 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

202 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would
allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

203 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of
another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

204 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

205 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 61 of 232

correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

206 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP
model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

207 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to
be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

ADV_FSP.1 TOE and security policy

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

ADV_FSP.1.2D The developer shall provide a TSP.

Content and presentation of evidence elements:

ADV_FSP.1.1C The functional specification shall describe the TSF using an informal style.

ADV_FSP.1.2C The functional specification shall include an informal presentation of syntax and
semantics of all external TSF interfaces.

ADV_FSP.1.3C The functional specification shall include evidence that demonstrates that the TSF
is completely represented.

Evaluator action elements:

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 62 of 232 Version 1.00 96/01/31

ADV_FSP.1.2E The evaluator shall determine that the functional specification is consistent with the
TSP.

ADV_FSP.1.3E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_HLD High-level design

Objectives

208 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e., subsystems) and relates these units to the functions that they
contain. The high-level design provides assurance that the TOE provides an
architecture appropriate to implement the claimed functional requirements.

209 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function and
identifies the security functions enforced by the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Application notes

210 In addition to the content indicated in the following requirements, the high-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

211 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using
“layers”, “domains”, or “servers”.

212 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the high-level design. In the course of
the high-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 63 of 232

213 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

214 The term “security functionality” is used to represent operations that a subsystem
performs that have some effect on the security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

215 The term “TSP enforcing subsystems” refers to a subsystem that contributes to the
enforcement of the TSP.

ADV_HLD.2 Security enforcing high-level design

Dependencies:

 ADV_FSP.1 TOE and security policy

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_HLD.2.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.2.1C The presentation of the high-level design shall be informal.

ADV_HLD.2.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.2.3C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.2.4C The high-level design shall identify the interfaces of the subsystems of the TSF.

ADV_HLD.2.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.2.6C The high-level design shall describe the separation of the TSF into TSP
enforcing and other subsystems.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 64 of 232 Version 1.00 96/01/31

Evaluator action elements:

ADV_HLD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.2.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_RCR Representation correspondence

Objectives

216 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

Application notes

217 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

218 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and
then make a determination as to whether the functional requirements in the ST have
been satisfied.

219 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

ADV_RCR.1 Informal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.1.1D The developer shall provide evidence that the least abstract TSF representation
provided is an accurate, consistent, and complete instantiation of the functional
requirements expressed in the ST.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 65 of 232

Content and presentation of evidence elements:

ADV_RCR.1.1C For each adjacent pair of TSF representations, the evidence shall demonstrate that
all parts of the more abstract representation are refined in the less abstract
representation.

ADV_RCR.1.2C For each adjacent pair of TSF representations, the demonstration of correspondence
between the representations may be informal.

Evaluator action elements:

ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.1.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation provided to
ensure accuracy, consistency, and completeness.

AGD Guidance documents

220 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

AGD_ADM Administrator guidance

Objectives

221 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

Application notes

222 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

223 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 66 of 232 Version 1.00 96/01/31

to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance
requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a secure
manner.

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and privileges
that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and effective
use of the security functions within the TSF.

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters, and
those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security functions
interact.

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to configure
the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may be
used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of procedures
relevant to the administration of security.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 67 of 232

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents supplied
for evaluation.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

AGD_USR User guidance

Objectives

224 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

225 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

Application notes

226 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

227 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 68 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions provided
by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that should
be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered for
evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC Life cycle support

228 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during development and maintenance.
Confidence in the correspondence between the TOE security requirements and the
TOE is greater if security analysis and the production of the evidence are done on
a regular basis as an integral part of the development and maintenance activities.

ALC_DVS Development security

Objectives

229 Development security is concerned with physical, procedural, personnel, and other
security measures that may be used in the development environment to protect the
TOE. It includes the physical security of the development location and any
procedures used to select development staff.

Application notes

230 The evaluator should decide whether there is a need for visiting the user’s site in
order to confirm that the requirements of this family are met.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 69 of 232

ALC_DVS.1 Identification of security measures

Dependencies:

No dependencies.

Developer action elements:

ALC_DVS.1.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.1.1C The development security documentation shall describe the physical,
procedural, personnel, and other security measures that are used to protect
the confidentiality and integrity of the TOE during its development.

ALC_DVS.1.2C The development security documentation shall provide evidence that these
security measures are followed during the development and maintenance of
the TOE.

Evaluator action elements:

ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_DVS.1.2E The evaluator shall check whether the security measures are being applied.

ATE Tests

231 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional
requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

232 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

233 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 70 of 232 Version 1.00 96/01/31

234 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_COV Coverage

Objectives

235 This family addresses those aspects of testing that deal with completeness of
testing. That is, it addresses the extent to which the TOE security functions are
tested, whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates as specified, and whether or not the order in which testing proceeds
correctly accounts for functional dependencies between the portions of the TOE
being tested.

Application notes

236 The specific documentation required by the coverage components will be
determined, in most cases, by the documentation stipulated in the level of
ATE_FUN that is specified. However, the PP/ST author will need to give
consideration to the proper set of test evidence and documentation required.

ATE_COV.2 Complete coverage - rigorous

Objectives

237 The objective is that testing completely address the security functions.

238 In this component, the objective is to ensure that there is a detailed correspondence
between the tests and the security functions.

Application notes

239 The analysis of the test coverage in support of the detailed correspondence can be
informal.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.2.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements:

ATE_COV.2.1C The analysis of the test coverage shall demonstrate that the tests identified in the
test documentation cover the TSF.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 71 of 232

ATE_COV.2.2C The analysis of the test coverage shall demonstrate the correspondence
between the security functions and the tests identified in the test
documentation.

Evaluator action elements:

ATE_COV.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_DPT Depth

Objectives

240 The components in this family deal with the level of detail to which the TOE is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

241 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internals of the TOE, are more likely to discover any malicious
code that has been inserted.

Application notes

242 The specific amount and type of documentation and evidence will, in general, be
determined by that required by level of ATE_FUN selected. However, the PP/ST
author will need to give consideration to the proper set of test evidence and
documentation required.

ATE_DPT.2 Testing - high level design

Objectives

243 The functional specification of a TOE provides a high level description of the
external workings of the TSF. Testing at the level of the functional specification, in
order to demonstrate the presence of any flaws, provides assurance that the TSF
functional specification has been correctly realised.

244 The subsystems of a TOE provide a high level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

Application notes

245 The functional specification representation is used to express the notion of the most
abstract representation of the TSF.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 72 of 232 Version 1.00 96/01/31

246 The developer is expected to describe the testing of the high level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts. While the developer
is not required to actually have “subsystems”, the developer is expected to represent
a similar notion of decomposition.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.2.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.2.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TOE operates in
accordance with the functional specification, and high level design of the TSF.

Evaluator action elements:

ATE_DPT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_FUN Functional tests

Objectives

247 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the functional requirements of its PP/ST. Functional testing provides
assurance that the TSF satisfies at least the security functional requirements,
although it cannot establish that the TSF does no more than what was specified. The
family “Functional tests” is focused on the type and amount of documentation or
support tools required, and what is to be demonstrated through testing.

248 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

Application notes

249 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results is
derived from the test inputs.

250 The developer shall eliminate all security relevant flaws discovered during testing.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 73 of 232

251 The developer shall test the TSF to determine that no new security relevant flaws
have been introduced as a result of eliminating discovered security relevant flaws.

ATE_FUN.1 Functional testing

Objectives

252 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

Dependencies:

ATE_COV.1 Complete coverage - informal

ATE_DPT.1 Testing - functional specification

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions, and
test results.

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the goal
of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and describe
the scenarios for testing each security function.

ATE_FUN.1.4C The test results in the test documentation shall show the expected results of each
test.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate that each
security function operates as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND Independent testing

Objectives

253 The objective is to demonstrate that the security functions perform as specified.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 74 of 232 Version 1.00 96/01/31

254 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

255 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

256 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.2 Independent testing - sample

Objectives

257 The objective is to demonstrate that the security functions perform as specified.

258 In this component, the objective is to select and repeat a sample of the developer
testing.

Application notes

259 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

260 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

261 The developer is required to perform testing and to provide test documentation and
test results. This is addressed by the ATE_FUN family.

262 Testing may be selective and shall be based upon all available documentation.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

ATE_FUN.1 Functional testing

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 75 of 232

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.2.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.2.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify
the developer test results.

AVA Vulnerability assessment

263 The class “Vulnerability assessment” encompasses four families: covert channel
analysis (AVA_CCA), misuse (AVA_MSU), strength of TOE security functions
(AVA_SOF) and vulnerability analysis (AVA_VLA). The class addresses the
existence of exploitable covert channels, the misuse or incorrect configuration of
the TOE, the ability for all critical security mechanisms to withstand direct attack
and the definition and assessment of penetration tests to exploit vulnerabilities
introduced in the development or the operation of the TOE.

AVA_MSU Misuse

Objectives

264 Misuse investigates whether the TOE can be configured or used in a manner which
is insecure but which an administrator or end-user of the TOE would reasonably
believe to be secure.

265 The objective is to minimise the risk of human or other errors in operation which
may deactivate, disable, or fail to activate security functions.

266 The objective is to minimise the probability of configuring or installing the TOE in
a way which is insecure, without the end user or administrator being able to
recognise it.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 76 of 232 Version 1.00 96/01/31

Application notes

267 Conflicting, misleading or incomplete guidance may result in a user of the TOE
believing that the TOE is secure, when it is not. Conflicting guidance can result in
vulnerabilities.

268 An example of conflicting guidance would be two guidance instructions which
imply different outcomes when the same input is supplied.

269 An example of misleading guidance would be the description of a single guidance
instruction which could be parsed in more than one way, one of which may result
in an insecure state.

270 An example of completeness would be referencing assertions of dependencies on
external security measures e.g., such as external procedural, physical and personnel
controls.

AVA_MSU.1 Misuse analysis - obvious flaws

Objectives

271 The objective is to ensure that conflicting guidance in the guidance documentation
have been addressed.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.1.1D The developer shall document an analysis of the guidance documentation for
conflicting and incomplete guidance.

AVA_MSU.1.2D The developer shall ensure that the guidance documentation contains no
misleading or unreasonable guidance.

Content and presentation of evidence elements:

AVA_MSU.1.1C The analysis documentation shall provide a rationale that demonstrates that
the guidance is not conflicting and is complete.

Evaluator action elements:

AVA_MSU.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_MSU.1.2E The evaluator shall determine that there is no misleading or unreasonable
guidance in the guidance documentation.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 77 of 232

AVA_MSU.1.3E The evaluator shall repeat any procedures in the guidance documentation to
ensure that they produce the documented results.

AVA_SOF Strength of TOE security functions

Objectives

272 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
functions claim.

Application notes

273 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

274 The strength of TOE security functions evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

275 The strength of a function is rated ‘basic’ if the analysis shows that the function
provides adequate protection against unintended or casual breach of TOE security
by attackers possessing a low attack potential.

276 The strength of a function is rated ‘medium’ if the analysis shows that the function
provides adequate protection against attackers possessing a moderate attack
potential.

277 The strength of a function is rated ‘high’ if the analysis shows that the function
provides adequate protection against attackers possessing a high attack potential.

278 The attack potential is derived from the attacker’s expertise, opportunities,
resources, and motivation.

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 78 of 232 Version 1.00 96/01/31

Developer action elements:

AVA_SOF.1.1D The developer shall identify all TOE security mechanisms for which a strength of
TOE security function analysis is appropriate.

AVA_SOF.1.2D The developer shall perform a strength of TOE security function analysis for each
identified mechanism.

Content and presentation of evidence elements:

AVA_SOF.1.1C The strength of TOE security function analysis shall determine the impact of the
identified TOE security mechanisms on the ability of the TOE security functions to
counter the threats.

AVA_SOF.1.2C The strength of TOE security function analysis shall demonstrate that the identified
strength of the security functions is consistent with the security objectives of the
TOE.

AVA_SOF.1.3C Each strength claim shall be either basic, medium, or high.

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that all TOE security mechanisms requiring a strength
analysis have been identified.

AVA_SOF.1.3E The evaluator shall confirm that the strength claims are correct.

AVA_VLA Vulnerability analysis

Objectives

279 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or e.g., by flaw hypotheses, could allow malicious users to violate the TSP.

280 Vulnerability analysis deals with the threats that a malicious user will be able to
discover flaws that will allow access to resources (e.g., data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

Application notes

281 The vulnerability analysis should consider the contents of all the TOE deliverables
for the targeted evaluation assurance level.

CCEB-96/013_D EAL 3 - Methodically tested and checked

96/01/31 Version 1.00 Page 79 of 232

282 Obvious vulnerabilities are those that allow common attacks or those that might be
suggested by the TOE interface description. Obvious vulnerabilities are those in the
public domain, details of which should be known to a developer or available from
an evaluation oversight body.

283 The evidence identifies all the TOE documentation upon which the search for flaws
was based.

AVA_VLA.1 Developer vulnerability analysis

Objectives

284 A vulnerability analysis is performed by the developer to ascertain the presence of
“obvious” security vulnerabilities.

285 The objective is to confirm that no identified security vulnerabilities can be
exploited in the intended environment for the TOE.

Application notes

286 Obvious vulnerabilities are those which are open to exploitation which requires a
minimum of understanding of the TOE, skill, technical sophistication, and
resources.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.1.1D The developer shall perform and document an analysis of the TOE deliverables
searching for obvious ways in which a user can violate the TSP.

AVA_VLA.1.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.1.1C The evidence shall show, for each vulnerability, that the vulnerability cannot be
exploited in the intended environment for the TOE.

Evaluator action elements:

AVA_VLA.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

EAL 3 - Methodically tested and checked CCEB-96/013_D

Page 80 of 232 Version 1.00 96/01/31

AVA_VLA.1.2E The evaluator shall conduct penetration testing, based on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

114CCEB-96/013_D

96/01/31 Version 1.00 Page 81 of 232

EAL 4

Methodically designed, tested, and reviewed

ACM Configuration management

287 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_AUT CM automation

Objectives

288 The objective of introducing automated CM tools is to increase the efficiency of the
CM system, by simultaneously increasing the reliability of the CM system and
reducing the cost of operating it. While both automated and manual CM systems
can be bypassed, ignored, or insufficient to prevent unauthorised modification,
automated systems are less susceptible to human error or negligence. In addition,
while a manual CM system can accomplish all of the same things that an automated
system can, manual systems are typically more costly to operate on an ongoing
basis.

Application notes

289 For ACM_AUT.1 and ACM_AUT.2, there is a requirement that the automated CM
system control changes to the implementation representation of the TOE. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

ACM_AUT.1 Partial CM automation

Objectives

290 In development environments where the implementation representation is complex
or is being developed by multiple developers, it is difficult to control changes
without the support of automated tools. In particular, these automated tools need to
be able to support the numerous changes that occur during development and ensure
that those changes are performed by authorised developers before their application.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 82 of 232 Version 1.00 96/01/31

It is the objective of this component to ensure that the implementation
representation is controlled through automated means.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_AUT.1.1D The developer shall provide a CM plan.

Content and presentation of evidence elements:

ACM_AUT.1.1C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.1.2C The CM plan shall describe how the automated tools are used in the CM
system.

ACM_AUT.1.3C The CM system shall provide an automated means to ensure that only
authorised changes are made to the TOE implementation representation.

ACM_AUT.1.4C The CM system shall provide an automated means to support the generation
of any supported TSF from its implementation representation.

ACM_AUT.1.5C The CM system shall provide an automated means to support the comparison
of any two supported TSF versions, to ascertain the changes.

Evaluator action elements:

ACM_AUT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_CAP CM capabilities

Objectives

291 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

292 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

b) ensuring that no configuration items are missed during evaluation;

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 83 of 232

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

293 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

294 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The
evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

295 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

296 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.3 Generation support and acceptance procedures

Objectives

297 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

298 Assurance of TOE integrity may be gained by controlling the ability to modify the
TOE configuration items. Ensuring proper functionality and use of the CM system
also provides assurance that the CM system is correctly enforcing the integrity of
the TOE.

299 The ability to generate previous but still supported versions of the TOE is necessary
for the resolution of any new flaws discovered during operation.

300 The purpose of acceptance procedures is to confirm that any creation or
modification of TSF configuration items is authorised.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 84 of 232 Version 1.00 96/01/31

Dependencies:

ACM_SCP.1 Minimal CM coverage

ALC_DVS.1 Identification of security measures

Developer action elements:

ACM_CAP.3.1D The developer shall use a CM system.

ACM_CAP.3.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.3.1C The CM documentation shall include a configuration list, a CM plan, and an
acceptance plan.

ACM_CAP.3.2C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.3.3C The CM documentation shall describe the method used to uniquely identify the
TOE configuration items.

ACM_CAP.3.4C The CM plan shall describe how the CM system is used.

ACM_CAP.3.5C The CM documentation shall provide evidence that the CM system is working
properly.

ACM_CAP.3.6C The CM documentation shall provide evidence that all configuration items have
been and are being effectively maintained under the CM system.

ACM_CAP.3.7C The CM system shall ensure that only authorised changes are made to the TOE
configuration items.

ACM_CAP.3.8C The CM system shall support the generation of all supported versions of the
TOE.

ACM_CAP.3.9C The acceptance plan shall describe the procedures used to accept modified or
newly created TSF configuration items as part of the TOE.

Evaluator action elements:

ACM_CAP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 85 of 232

ACM_SCP CM scope

Objectives

301 The objective is to ensure that all necessary TOE configuration items are tracked by
the CM system. This helps to ensure that the integrity of these configuration items
is protected through the capabilities of the CM system.

302 The objectives of this family include the following:

a) ensuring that the TOE implementation representation is tracked;

b) ensuring that all necessary documentation, including problem reports, are
tracked during development and operation;

c) ensuring that configuration options (e.g. compiler switches) are tracked; and

d) ensuring that development tools are tracked.

Application notes

303 For ACM_SCP.1 and the higher components, there is a requirement that the TOE
implementation representation be tracked by the CM system. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

304 For ACM_SCP.2 and ACM_SCP.3, there is a requirement that security flaws be
tracked by the CM system. This requires that information regarding previous
security flaws and their resolution be maintained, as well as details regarding
current security flaws.

305 For ACM_SCP.3, there is a requirement that development tools and other related
information be tracked by the CM system. Examples of development tools are
programming languages and compilers. Information pertaining to TOE generation
items (such as compiler options, installation/generation options, and build options)
is an example of information relating to development tools.

ACM_SCP.2 Problem tracking CM coverage

Objectives

306 A CM system can control changes only to those items that have been placed under
CM. At a minimum, the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation should be placed under CM.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 86 of 232 Version 1.00 96/01/31

307 The ability to track security flaws under CM ensures that security flaw reports are
not lost or forgotten, and allows a developer to track security flaws to their
resolution.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_SCP.2.1D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_SCP.2.1C As a minimum, the following shall be tracked by the CM system: the TOE
implementation representation, design documentation, test documentation,
user documentation, administrator documentation, CM documentation, and
security flaws.

ACM_SCP.2.2C The CM documentation shall describe how configuration items are tracked by the
CM system.

Evaluator action elements:

ACM_SCP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADO Delivery and operation

308 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

ADO_IGS Installation, generation, and start-up

Objectives

309 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started in a secure manner as intended by
the developer.

Application notes

310 The generation requirements are applicable only to TOEs that provide the ability to
generate an operational TOE from source or object code.

311 The installation, generation, and start-up procedures may exist as a separate
document, but would typically be grouped with other administrative guidance.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 87 of 232

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures to be used for the secure installation,
generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV Development

312 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for
a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

313 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

ADV_FSP Functional specification

Objectives

314 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 88 of 232 Version 1.00 96/01/31

the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

315 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

316 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would
allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

317 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of
another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

318 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

319 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the
correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

320 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 89 of 232

model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

321 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to
be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

ADV_FSP.2 Informal security policy model

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.2.1D The developer shall provide a functional specification.

ADV_FSP.2.2D The developer shall provide a TSP.

ADV_FSP.2.3D The developer shall provide an informal TSP model.

ADV_FSP.2.4D The developer shall provide a demonstration of correspondence between the
informal TSP model and the functional specification.

Content and presentation of evidence elements:

ADV_FSP.2.1C The functional specification shall describe the TSF using an informal style.

ADV_FSP.2.2C The functional specification shall include an informal presentation of syntax and
semantics of all external TSF interfaces.

ADV_FSP.2.3C The functional specification shall include evidence that demonstrates that the TSF
is completely represented.

ADV_FSP.2.4C The demonstration of correspondence between the informal TSP model and
the functional specification shall describe how the functional specification
satisfies the informal TSP model.

ADV_FSP.2.5C The demonstration of correspondence between the informal TSP model and
the functional specification shall show that there are no security functions in
the functional specification that conflict with the informal TSP model.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 90 of 232 Version 1.00 96/01/31

ADV_FSP.2.6C The informal TSP model shall describe the rules and characteristics of all
policies of the TSP that can be modeled.

ADV_FSP.2.7C The informal TSP model shall include a rationale that demonstrates that
policies of the TSP that are modeled are satisfied by the informal TSP model.

ADV_FSP.2.8C The informal TSP model shall justify that all policies of the TSP that can be
modeled are represented in the informal TSP model.

Evaluator action elements:

ADV_FSP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.2.2E The evaluator shall determine that the functional specification is consistent with the
TSP.

ADV_FSP.2.3E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_HLD High-level design

Objectives

322 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e., subsystems) and relates these units to the functions that they
contain. The high-level design provides assurance that the TOE provides an
architecture appropriate to implement the claimed functional requirements.

323 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function and
identifies the security functions enforced by the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Application notes

324 In addition to the content indicated in the following requirements, the high-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

325 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using
“layers”, “domains”, or “servers”.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 91 of 232

326 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the high-level design. In the course of
the high-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

327 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

328 The term “security functionality” is used to represent operations that a subsystem
performs that have some effect on the security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

329 The term “TSP enforcing subsystems” refers to a subsystem that contributes to the
enforcement of the TSP.

ADV_HLD.2 Security enforcing high-level design

Dependencies:

 ADV_FSP.1 TOE and security policy

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_HLD.2.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.2.1C The presentation of the high-level design shall be informal.

ADV_HLD.2.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.2.3C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 92 of 232 Version 1.00 96/01/31

ADV_HLD.2.4C The high-level design shall identify the interfaces of the subsystems of the TSF.

ADV_HLD.2.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.2.6C The high-level design shall describe the separation of the TSF into TSP enforcing
and other subsystems.

Evaluator action elements:

ADV_HLD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.2.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_IMP Implementation representation

Objectives

330 The description of the implementation in the form of source code, firmware,
hardware drawings, etc. captures the detailed internal workings of the TSF in
support of analysis.

Application notes

331 The implementation representation is used to express the notion of the least abstract
representation of the TSF, specifically the one that is used to create the TSF itself
without further design refinement. Source code which is then compiled or a
hardware drawing which is used to build the actual hardware are examples of parts
of an implementation representation.

332 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the implementation. In the course of
the implementation evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a more abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis is necessary.
However, since the implementation is the least abstract representation it is likely
that further analysis cannot be performed, unless the TSF representations have not
been evaluated in a usual order (i.e., most abstract to least abstract). If requirements
are not addressed after the analysis of all TSF representations, this represents a
failure of the TOE evaluation. Note that this more comprehensive failure
determination requirement is realised in the Representation correspondence
(ADV_RCR) family.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 93 of 232

333 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

334 It is expected that evaluators will use the implementation to directly support other
evaluation activities (e.g., vulnerability analysis, test coverage analysis). It is
expected that PP/ST authors will select a component that requires that the
implementation is complete and comprehensible enough to address the needs of all
other requirements included in the PP/ST.

ADV_IMP.1 Subset of the implementation of the TSF

Application notes

335 The PP/ST author should identify the subset of the implementation representation
to be delivered. If a specific subset of the source code/hardware drawing to be
delivered has not been specified by the PP/ST author, the evaluator has the option
of requesting a subset of the source code/hardware drawings for analysis.

336 The intent is not an open ended invitation for the evaluator to demand
implementation representations, but rather that the evaluator may request
implementation representations that may support the demonstration that functional
requirements have been met. For example, see the application notes for this family
of assurance components.

Dependencies:

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.1 Well defined development tools

Developer action elements:

ADV_IMP.1.1D The developer shall provide the implementation representations for a selected
subset of the TSF.

Content and presentation of evidence elements:

ADV_IMP.1.1C The implementation representations shall unambiguously define the TSF to a
level of detail such that the TSF can be generated without further design
decisions.

Evaluator action elements:

ADV_IMP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_IMP.1.2E The evaluator shall determine if the functional requirements in the ST are
addressed by the representation of the TSF.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 94 of 232 Version 1.00 96/01/31

ADV_LLD Low-level design

Objectives

337 The low-level design of a TOE provides a description of the internal workings of
the TSF in terms of modules and their interrelationships and dependencies. The
low-level design provides assurance that the TSF subsystems have been correctly
and effectively refined.

338 For each module of the TSF, the low-level design describes its purpose, function,
interfaces, dependencies, and the implementation of any TSP enforcing functions.

Application notes

339 In addition to the content indicated in the following requirements, the low-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

340 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the low-level design. In the course of
the low-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

341 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

342 The term “TSP enforcing function” refers to any function that contributes to TSP
enforcement. The term “TSP enforcing modules” similarly refers to any module
that contributes to TSP enforcement.

ADV_LLD.1 Descriptive low-level design

Dependencies:

 ADV_HLD.1 Descriptive high-level design

 ADV_RCR.1 Informal correspondence demonstration

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 95 of 232

Developer action elements:

ADV_LLD.1.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.1.1C The presentation of the low-level design shall be informal.

ADV_LLD.1.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.1.3C The low-level design shall describe the purpose of each module.

ADV_LLD.1.4C The low-level design shall define the interrelationships between the modules in
terms of provided functionality and dependencies on other modules.

ADV_LLD.1.5C The low-level design shall describe the implementation of all TSP enforcing
functions.

ADV_LLD.1.6C The low-level design shall describe the interfaces of each module in terms of
their syntax and semantics.

ADV_LLD.1.7C The low-level design shall provide a demonstration that the TSF is completely
represented.

ADV_LLD.1.8C The low-level design shall identify the interfaces of the modules of the TSF
visible at the external interface of the TSF.

Evaluator action elements:

ADV_LLD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_LLD.1.2E The evaluator shall determine if the functional requirements in the ST are
addressed by the representation of the TSF.

ADV_RCR Representation correspondence

Objectives

343 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 96 of 232 Version 1.00 96/01/31

Application notes

344 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

345 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and
then make a determination as to whether the functional requirements in the ST have
been satisfied.

346 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

ADV_RCR.1 Informal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.1.1D The developer shall provide evidence that the least abstract TSF representation
provided is an accurate, consistent, and complete instantiation of the functional
requirements expressed in the ST.

Content and presentation of evidence elements:

ADV_RCR.1.1C For each adjacent pair of TSF representations, the evidence shall demonstrate that
all parts of the more abstract representation are refined in the less abstract
representation.

ADV_RCR.1.2C For each adjacent pair of TSF representations, the demonstration of correspondence
between the representations may be informal.

Evaluator action elements:

ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.1.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation provided to
ensure accuracy, consistency, and completeness.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 97 of 232

AGD Guidance documents

347 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

AGD_ADM Administrator guidance

Objectives

348 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

Application notes

349 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

350 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant
to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance
requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a secure
manner.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 98 of 232 Version 1.00 96/01/31

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and privileges
that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and effective
use of the security functions within the TSF.

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters, and
those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security functions
interact.

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to configure
the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may be
used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of procedures
relevant to the administration of security.

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents supplied
for evaluation.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

AGD_USR User guidance

Objectives

351 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 99 of 232

352 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

Application notes

353 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

354 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions provided
by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that should
be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered for
evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 100 of 232 Version 1.00 96/01/31

ALC Life cycle support

355 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during development and maintenance.
Confidence in the correspondence between the TOE security requirements and the
TOE is greater if security analysis and the production of the evidence are done on
a regular basis as an integral part of the development and maintenance activities.

ALC_DVS Development security

Objectives

356 Development security is concerned with physical, procedural, personnel, and other
security measures that may be used in the development environment to protect the
TOE. It includes the physical security of the development location and any
procedures used to select development staff.

Application notes

357 The evaluator should decide whether there is a need for visiting the user’s site in
order to confirm that the requirements of this family are met.

ALC_DVS.1 Identification of security measures

Dependencies:

No dependencies.

Developer action elements:

ALC_DVS.1.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.1.1C The development security documentation shall describe the physical, procedural,
personnel, and other security measures that are used to protect the confidentiality
and integrity of the TOE during its development.

ALC_DVS.1.2C The development security documentation shall provide evidence that these security
measures are followed during the development and maintenance of the TOE.

Evaluator action elements:

ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_DVS.1.2E The evaluator shall check whether the security measures are being applied.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 101 of 232

ALC_LCD Life cycle definition

Objectives

358 Poorly controlled development and maintenance can result in a flawed
implementation of a TOE (or a TOE that does not meet all of its security
requirements). This, in turn, results in security violations. Therefore, it is important
that a model for the development and maintenance of a TOE be established as early
as possible in the TOE’s life-cycle.

359 Using a model for the development and maintenance of a TOE does not guarantee
that the TOE will be free of flaws, nor does it guarantee that the TOE will meet all
of its security functional requirements. It is possible that the model chosen was
insufficient or inadequate and therefore no benefits in the quality of the TOE could
be observed. Using a life-cycle model that has been approved by some group of
experts (e.g., academic experts, standards bodies) improves the chances that the
development and maintenance models will contribute to the overall quality of the
TOE.

Application notes

360 Although life-cycle definition deals with the maintenance of the TOE and hence
with aspects becoming relevant after the completion of the evaluation, its
evaluation adds assurance through an analysis the life-cycle information for the
TOE provided at the time of the evaluation.

361 A life-cycle model encompasses the procedures, tools and techniques used to
develop and maintain the TOE.

362 A standardised life-cycle model is a model that has been approved by some group
of experts (e.g., academic experts, standards bodies).

363 A measurable life-cycle model is a model with some arithmetic parameters so that
e.g. the coding standards can be measured.

ALC_LCD.1 Developer defined life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.1.1D The developer shall establish a life-cycle model to be used in the development
and maintenance of the TOE.

ALC_LCD.1.2D The developer shall produce life-cycle definition documentation.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 102 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

ALC_LCD.1.1C The life-cycle definition documentation shall describe the model used to
develop and maintain the TOE.

Evaluator action elements:

ALC_LCD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT Tools and techniques

Objectives

364 Tools and techniques is an aspect of selecting tools which are used to develop,
analyse and implement the TOE. It includes requirements to prevent ill-defined,
inconsistent or incorrect development tools from being used to develop the TOE.
This includes, but is not limited to programming languages, documentation,
implementation standards, and other parts of the TOE like supporting runtime
libraries.

Application notes

365 There is a requirement for well-defined development tools. These are tools which
have been shown to be well understood and applicable without the need for
intensive further clarification. For example, programming languages and computer
aided design (CAD) systems that are based on an a standard published by standards
bodies are considered to be well-defined.

366 Tools and techniques distinguishes between the implementation standards applied
by the developer and the implementation standards for “all parts of the TOE” which
additionally includes third party software, hardware, or firmware.

367 The requirement in ALC_TAT.1.2C is specifically applicable to programming
languages so as to ensure that all statements in the source code have an
unambiguous meaning.

ALC_TAT.1 Well defined development tools

Dependencies:

No dependencies.

Developer action elements:

ALC_TAT.1.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.1.2D The developer shall document the selected implementation dependent options
of the development tools.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 103 of 232

Content and presentation of evidence elements:

ALC_TAT.1.1C Any development tools used for implementation shall be well-defined.

ALC_TAT.1.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

Evaluator action elements:

ALC_TAT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE Tests

368 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional
requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

369 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

370 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

371 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_COV Coverage

Objectives

372 This family addresses those aspects of testing that deal with completeness of
testing. That is, it addresses the extent to which the TOE security functions are
tested, whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates as specified, and whether or not the order in which testing proceeds
correctly accounts for functional dependencies between the portions of the TOE
being tested.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 104 of 232 Version 1.00 96/01/31

Application notes

373 The specific documentation required by the coverage components will be
determined, in most cases, by the documentation stipulated in the level of
ATE_FUN that is specified. However, the PP/ST author will need to give
consideration to the proper set of test evidence and documentation required.

ATE_COV.2 Complete coverage - rigorous

Objectives

374 The objective is that testing completely address the security functions.

375 In this component, the objective is to ensure that there is a detailed correspondence
between the tests and the security functions.

Application notes

376 The analysis of the test coverage in support of the detailed correspondence can be
informal.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.2.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements:

ATE_COV.2.1C The analysis of the test coverage shall demonstrate that the tests identified in the
test documentation cover the TSF.

ATE_COV.2.2C The analysis of the test coverage shall demonstrate the correspondence between the
security functions and the tests identified in the test documentation.

Evaluator action elements:

ATE_COV.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 105 of 232

ATE_DPT Depth

Objectives

377 The components in this family deal with the level of detail to which the TOE is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

378 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internals of the TOE, are more likely to discover any malicious
code that has been inserted.

Application notes

379 The specific amount and type of documentation and evidence will, in general, be
determined by that required by level of ATE_FUN selected. However, the PP/ST
author will need to give consideration to the proper set of test evidence and
documentation required.

ATE_DPT.2 Testing - high level design

Objectives

380 The functional specification of a TOE provides a high level description of the
external workings of the TSF. Testing at the level of the functional specification, in
order to demonstrate the presence of any flaws, provides assurance that the TSF
functional specification has been correctly realised.

381 The subsystems of a TOE provide a high level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

Application notes

382 The functional specification representation is used to express the notion of the most
abstract representation of the TSF.

383 The developer is expected to describe the testing of the high level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts. While the developer
is not required to actually have “subsystems”, the developer is expected to represent
a similar notion of decomposition.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 106 of 232 Version 1.00 96/01/31

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.2.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.2.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TOE operates in accordance
with the functional specification, and high level design of the TSF.

Evaluator action elements:

ATE_DPT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_FUN Functional tests

Objectives

384 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the functional requirements of its PP/ST. Functional testing provides
assurance that the TSF satisfies at least the security functional requirements,
although it cannot establish that the TSF does no more than what was specified. The
family “Functional tests” is focused on the type and amount of documentation or
support tools required, and what is to be demonstrated through testing.

385 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

Application notes

386 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results is
derived from the test inputs.

387 The developer shall eliminate all security relevant flaws discovered during testing.

388 The developer shall test the TSF to determine that no new security relevant flaws
have been introduced as a result of eliminating discovered security relevant flaws.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 107 of 232

ATE_FUN.1 Functional testing

Objectives

389 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

Dependencies:

ATE_COV.1 Complete coverage - informal

ATE_DPT.1 Testing - functional specification

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions, and
test results.

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the goal
of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and describe
the scenarios for testing each security function.

ATE_FUN.1.4C The test results in the test documentation shall show the expected results of each
test.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate that each
security function operates as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND Independent testing

Objectives

390 The objective is to demonstrate that the security functions perform as specified.

391 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 108 of 232 Version 1.00 96/01/31

of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

392 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

393 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.2 Independent testing - sample

Objectives

394 The objective is to demonstrate that the security functions perform as specified.

395 In this component, the objective is to select and repeat a sample of the developer
testing.

Application notes

396 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

397 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

398 The developer is required to perform testing and to provide test documentation and
test results. This is addressed by the ATE_FUN family.

399 Testing may be selective and shall be based upon all available documentation.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

ATE_FUN.1 Functional testing

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 109 of 232

Content and presentation of evidence elements:

ATE_IND.2.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.2.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify the
developer test results.

AVA Vulnerability assessment

400 The class “Vulnerability assessment” encompasses four families: covert channel
analysis (AVA_CCA), misuse (AVA_MSU), strength of TOE security functions
(AVA_SOF) and vulnerability analysis (AVA_VLA). The class addresses the
existence of exploitable covert channels, the misuse or incorrect configuration of
the TOE, the ability for all critical security mechanisms to withstand direct attack
and the definition and assessment of penetration tests to exploit vulnerabilities
introduced in the development or the operation of the TOE.

AVA_MSU Misuse

Objectives

401 Misuse investigates whether the TOE can be configured or used in a manner which
is insecure but which an administrator or end-user of the TOE would reasonably
believe to be secure.

402 The objective is to minimise the risk of human or other errors in operation which
may deactivate, disable, or fail to activate security functions.

403 The objective is to minimise the probability of configuring or installing the TOE in
a way which is insecure, without the end user or administrator being able to
recognise it.

Application notes

404 Conflicting, misleading or incomplete guidance may result in a user of the TOE
believing that the TOE is secure, when it is not. Conflicting guidance can result in
vulnerabilities.

405 An example of conflicting guidance would be two guidance instructions which
imply different outcomes when the same input is supplied.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 110 of 232 Version 1.00 96/01/31

406 An example of misleading guidance would be the description of a single guidance
instruction which could be parsed in more than one way, one of which may result
in an insecure state.

407 An example of completeness would be referencing assertions of dependencies on
external security measures e.g., such as external procedural, physical and personnel
controls.

AVA_MSU.2 Misuse analysis - independent verification

Objectives

408 The objective is to ensure that conflicting guidance in the guidance documentation
have been addressed.

409 In this component, the objective is to provide additional assurance by performing
an independent analysis.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.2.1D The developer shall document an analysis of the guidance documentation for
conflicting and incomplete guidance.

AVA_MSU.2.2D The developer shall ensure that the guidance documentation contains no misleading
or unreasonable guidance.

Content and presentation of evidence elements:

AVA_MSU.2.1C The analysis documentation shall provide a rationale that demonstrates that the
guidance is not conflicting and is complete.

Evaluator action elements:

AVA_MSU.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_MSU.2.2E The evaluator shall determine that there is no misleading or unreasonable guidance
in the guidance documentation.

AVA_MSU.2.3E The evaluator shall repeat any procedures in the guidance documentation to ensure
that they produce the documented results.

AVA_MSU.2.4E The evaluator shall perform independent testing to confirm that the TOE can
be configured and operated securely using only the guidance documentation.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 111 of 232

AVA_SOF Strength of TOE security functions

Objectives

410 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
functions claim.

Application notes

411 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

412 The strength of TOE security functions evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

413 The strength of a function is rated ‘basic’ if the analysis shows that the function
provides adequate protection against unintended or casual breach of TOE security
by attackers possessing a low attack potential.

414 The strength of a function is rated ‘medium’ if the analysis shows that the function
provides adequate protection against attackers possessing a moderate attack
potential.

415 The strength of a function is rated ‘high’ if the analysis shows that the function
provides adequate protection against attackers possessing a high attack potential.

416 The attack potential is derived from the attacker’s expertise, opportunities,
resources, and motivation.

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

Developer action elements:

AVA_SOF.1.1D The developer shall identify all TOE security mechanisms for which a strength of
TOE security function analysis is appropriate.

AVA_SOF.1.2D The developer shall perform a strength of TOE security function analysis for each
identified mechanism.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 112 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

AVA_SOF.1.1C The strength of TOE security function analysis shall determine the impact of the
identified TOE security mechanisms on the ability of the TOE security functions to
counter the threats.

AVA_SOF.1.2C The strength of TOE security function analysis shall demonstrate that the identified
strength of the security functions is consistent with the security objectives of the
TOE.

AVA_SOF.1.3C Each strength claim shall be either basic, medium, or high.

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that all TOE security mechanisms requiring a strength
analysis have been identified.

AVA_SOF.1.3E The evaluator shall confirm that the strength claims are correct.

AVA_VLA Vulnerability analysis

Objectives

417 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or e.g., by flaw hypotheses, could allow malicious users to violate the TSP.

418 Vulnerability analysis deals with the threats that a malicious user will be able to
discover flaws that will allow access to resources (e.g., data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

Application notes

419 The vulnerability analysis should consider the contents of all the TOE deliverables
for the targeted evaluation assurance level.

420 Obvious vulnerabilities are those that allow common attacks or those that might be
suggested by the TOE interface description. Obvious vulnerabilities are those in the
public domain, details of which should be known to a developer or available from
an evaluation oversight body.

421 The evidence identifies all the TOE documentation upon which the search for flaws
was based.

CCEB-96/013_D EAL 4 - Methodically designed, tested, and reviewed

96/01/31 Version 1.00 Page 113 of 232

AVA_VLA.2 Independent vulnerability analysis

Objectives

422 A vulnerability analysis is performed by the developer to ascertain the presence of
“obvious” security vulnerabilities.

423 The objective is to confirm that no identified security vulnerabilities can be
exploited in the intended environment for the TOE.

424 An independent vulnerability analysis is performed by the evaluator, which goes
beyond the “obvious” security vulnerabilities. The analysis considers the
deliverables available for the targeted evaluation assurance level.

Application notes

425 Obvious vulnerabilities are those which are open to exploitation which requires a
minimum of understanding of the TOE, skill, technical sophistication, and
resources.

426 Independent vulnerability analysis is based on fairly detailed technical information.
The attacker is assumed to be only reasonably familiar with the specific
implementation of the TOE. The attacker is presumed to have a reasonable level of
technical sophistication.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.2.1D The developer shall perform and document an analysis of the TOE deliverables
searching for obvious ways in which a user can violate the TSP.

AVA_VLA.2.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.2.1C The evidence shall show, for each vulnerability, that the vulnerability cannot be
exploited in the intended environment for the TOE.

AVA_VLA.2.2C The documentation shall justify that the TOE, with the identified
vulnerabilities, is resistant to obvious penetration attacks.

EAL 4 - Methodically designed, tested, and reviewed CCEB-96/013_D

Page 114 of 232 Version 1.00 96/01/31

Evaluator action elements:

AVA_VLA.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_VLA.2.2E The evaluator shall conduct penetration testing, based on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

AVA_VLA.2.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.2.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of identified
vulnerabilities in the target environment.

AVA_VLA.2.5E The evaluator shall determine that the TOE is resistant to obvious penetration
attacks.

152CCEB-96/013_D

96/01/31 Version 1.00 Page 115 of 232

EAL 5

Semiformally designed and tested

ACM Configuration management

427 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_AUT CM automation

Objectives

428 The objective of introducing automated CM tools is to increase the efficiency of the
CM system, by simultaneously increasing the reliability of the CM system and
reducing the cost of operating it. While both automated and manual CM systems
can be bypassed, ignored, or insufficient to prevent unauthorised modification,
automated systems are less susceptible to human error or negligence. In addition,
while a manual CM system can accomplish all of the same things that an automated
system can, manual systems are typically more costly to operate on an ongoing
basis.

Application notes

429 For ACM_AUT.1 and ACM_AUT.2, there is a requirement that the automated CM
system control changes to the implementation representation of the TOE. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

ACM_AUT.1 Partial CM automation

Objectives

430 In development environments where the implementation representation is complex
or is being developed by multiple developers, it is difficult to control changes
without the support of automated tools. In particular, these automated tools need to
be able to support the numerous changes that occur during development and ensure
that those changes are performed by authorised developers before their application.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 116 of 232 Version 1.00 96/01/31

It is the objective of this component to ensure that the implementation
representation is controlled through automated means.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_AUT.1.1D The developer shall provide a CM plan.

Content and presentation of evidence elements:

ACM_AUT.1.1C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.1.2C The CM plan shall describe how the automated tools are used in the CM system.

ACM_AUT.1.3C The CM system shall provide an automated means to ensure that only authorised
changes are made to the TOE implementation representation.

ACM_AUT.1.4C The CM system shall provide an automated means to support the generation of any
supported TSF from its implementation representation.

ACM_AUT.1.5C The CM system shall provide an automated means to support the comparison of any
two supported TSF versions, to ascertain the changes.

Evaluator action elements:

ACM_AUT.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_CAP CM capabilities

Objectives

431 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

432 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 117 of 232

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

433 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

434 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The
evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

435 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

436 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.3 Generation support and acceptance procedures

Objectives

437 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

438 Assurance of TOE integrity may be gained by controlling the ability to modify the
TOE configuration items. Ensuring proper functionality and use of the CM system
also provides assurance that the CM system is correctly enforcing the integrity of
the TOE.

439 The ability to generate previous but still supported versions of the TOE is necessary
for the resolution of any new flaws discovered during operation.

440 The purpose of acceptance procedures is to confirm that any creation or
modification of TSF configuration items is authorised.

Dependencies:

ACM_SCP.1 Minimal CM coverage

ALC_DVS.1 Identification of security measures

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 118 of 232 Version 1.00 96/01/31

Developer action elements:

ACM_CAP.3.1D The developer shall use a CM system.

ACM_CAP.3.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.3.1C The CM documentation shall include a configuration list, a CM plan, and an
acceptance plan.

ACM_CAP.3.2C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.3.3C The CM documentation shall describe the method used to uniquely identify the
TOE configuration items.

ACM_CAP.3.4C The CM plan shall describe how the CM system is used.

ACM_CAP.3.5C The CM documentation shall provide evidence that the CM system is working
properly.

ACM_CAP.3.6C The CM documentation shall provide evidence that all configuration items have
been and are being effectively maintained under the CM system.

ACM_CAP.3.7C The CM system shall ensure that only authorised changes are made to the TOE
configuration items.

ACM_CAP.3.8C The CM system shall support the generation of all supported versions of the TOE.

ACM_CAP.3.9C The acceptance plan shall describe the procedures used to accept modified or newly
created TSF configuration items as part of the TOE.

Evaluator action elements:

ACM_CAP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_SCP CM scope

Objectives

441 The objective is to ensure that all necessary TOE configuration items are tracked by
the CM system. This helps to ensure that the integrity of these configuration items
is protected through the capabilities of the CM system.

442 The objectives of this family include the following:

a) ensuring that the TOE implementation representation is tracked;

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 119 of 232

b) ensuring that all necessary documentation, including problem reports, are
tracked during development and operation;

c) ensuring that configuration options (e.g. compiler switches) are tracked; and

d) ensuring that development tools are tracked.

Application notes

443 For ACM_SCP.1 and the higher components, there is a requirement that the TOE
implementation representation be tracked by the CM system. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

444 For ACM_SCP.2 and ACM_SCP.3, there is a requirement that security flaws be
tracked by the CM system. This requires that information regarding previous
security flaws and their resolution be maintained, as well as details regarding
current security flaws.

445 For ACM_SCP.3, there is a requirement that development tools and other related
information be tracked by the CM system. Examples of development tools are
programming languages and compilers. Information pertaining to TOE generation
items (such as compiler options, installation/generation options, and build options)
is an example of information relating to development tools.

ACM_SCP.3 Development tools CM coverage

Objectives

446 A CM system can control changes only to those items that have been placed under
CM. At a minimum, the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation should be placed under CM.

447 The ability to track security flaws under CM ensures that security flaw reports are
not lost or forgotten, and allows a developer to track security flaws to their
resolution.

448 Development tools play an important role in ensuring the production of a quality
version of the TSF. Therefore, it is important to control modifications to these tools.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_SCP.3.1D The developer shall provide CM documentation.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 120 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

ACM_SCP.3.1C As a minimum, the following shall be tracked by the CM system: the TOE
implementation representation, design documentation, test documentation,
user documentation, administrator documentation, CM documentation,
security flaws, and development tools and related information.

ACM_SCP.3.2C The CM documentation shall describe how configuration items are tracked by the
CM system.

Evaluator action elements:

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADO Delivery and operation

449 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

ADO_IGS Installation, generation, and start-up

Objectives

450 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started in a secure manner as intended by
the developer.

Application notes

451 The generation requirements are applicable only to TOEs that provide the ability to
generate an operational TOE from source or object code.

452 The installation, generation, and start-up procedures may exist as a separate
document, but would typically be grouped with other administrative guidance.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures to be used for the secure installation,
generation, and start-up of the TOE.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 121 of 232

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV Development

453 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for
a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

454 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

ADV_FSP Functional specification

Objectives

455 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all
the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

456 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

457 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 122 of 232 Version 1.00 96/01/31

allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

458 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of
another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

459 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

460 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the
correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

461 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP
model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

462 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 123 of 232

be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

ADV_FSP.4 Formal security policy model

Application notes

463 The requirement for both an informal and semiformal functional specification is
necessary to allow an evaluator to effectively comprehend and evaluate the
semiformal representation using the informal representation for support.

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.4.1D The developer shall provide a functional specification.

ADV_FSP.4.2D The developer shall provide a TSP.

ADV_FSP.4.3D The developer shall provide a formal TSP model.

ADV_FSP.4.4D The developer shall provide a demonstration of correspondence between the
formal TSP model and the functional specification.

Content and presentation of evidence elements:

ADV_FSP.4.1C The functional specification shall describe the TSF using both an informal and
semiformal style.

ADV_FSP.4.2C The functional specification shall include both an informal and semiformal
presentation of syntax, effects, exceptions, error messages, and semantics of all
external TSF interfaces.

ADV_FSP.4.3C The functional specification shall include evidence that demonstrates that the TSF
is completely represented.

ADV_FSP.4.4C The demonstration of correspondence between the formal TSP model and the
functional specification shall describe how the functional specification satisfies
the formal TSP model.

ADV_FSP.4.5C The demonstration of correspondence between the formal TSP model and the
functional specification shall show that there are no security functions in the
functional specification that conflict with the formal TSP model.

ADV_FSP.4.6C The formal TSP model shall describe the rules and characteristics of all
policies of the TSP that can be modeled.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 124 of 232 Version 1.00 96/01/31

ADV_FSP.4.7C The formal TSP model shall include a rationale that demonstrates that policies
of the TSP that are modeled are satisfied by the formal TSP model.

ADV_FSP.4.8C The formal TSP model shall justify that all policies of the TSP that can be
modeled are represented in the formal TSP model.

Evaluator action elements:

ADV_FSP.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.4.2E The evaluator shall determine that the functional specification is consistent with the
TSP.

ADV_FSP.4.3E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_HLD High-level design

Objectives

464 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e., subsystems) and relates these units to the functions that they
contain. The high-level design provides assurance that the TOE provides an
architecture appropriate to implement the claimed functional requirements.

465 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function and
identifies the security functions enforced by the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Application notes

466 In addition to the content indicated in the following requirements, the high-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

467 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using
“layers”, “domains”, or “servers”.

468 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the high-level design. In the course of
the high-level design evaluation there are essentially three types of evaluator

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 125 of 232

determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

469 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

470 The term “security functionality” is used to represent operations that a subsystem
performs that have some effect on the security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

471 The term “TSP enforcing subsystems” refers to a subsystem that contributes to the
enforcement of the TSP.

ADV_HLD.3 Semiformal high-level design

Dependencies:

 ADV_FSP.3 Semiformal security policy model

 ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements:

ADV_HLD.3.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.3.1C The presentation of the high-level design shall be semiformal.

ADV_HLD.3.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.3.3C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.3.4C The high-level design shall identify the interfaces of the subsystems of the TSF.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 126 of 232 Version 1.00 96/01/31

ADV_HLD.3.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.3.6C The high-level design shall describe the separation of the TSF into TSP enforcing
and other subsystems.

Evaluator action elements:

ADV_HLD.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.3.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_IMP Implementation representation

Objectives

472 The description of the implementation in the form of source code, firmware,
hardware drawings, etc. captures the detailed internal workings of the TSF in
support of analysis.

Application notes

473 The implementation representation is used to express the notion of the least abstract
representation of the TSF, specifically the one that is used to create the TSF itself
without further design refinement. Source code which is then compiled or a
hardware drawing which is used to build the actual hardware are examples of parts
of an implementation representation.

474 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the implementation. In the course of
the implementation evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a more abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis is necessary.
However, since the implementation is the least abstract representation it is likely
that further analysis cannot be performed, unless the TSF representations have not
been evaluated in a usual order (i.e., most abstract to least abstract). If requirements
are not addressed after the analysis of all TSF representations, this represents a
failure of the TOE evaluation. Note that this more comprehensive failure
determination requirement is realised in the Representation correspondence
(ADV_RCR) family.

475 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 127 of 232

requirements and also each security function must not interfere with the operation
of any other security function.

476 It is expected that evaluators will use the implementation to directly support other
evaluation activities (e.g., vulnerability analysis, test coverage analysis). It is
expected that PP/ST authors will select a component that requires that the
implementation is complete and comprehensible enough to address the needs of all
other requirements included in the PP/ST.

ADV_IMP.2 Implementation of the TSF

Dependencies:

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.2 Compliance with implementation standards

Developer action elements:

ADV_IMP.2.1D The developer shall provide the implementation representations for the entire
TSF.

Content and presentation of evidence elements:

ADV_IMP.2.1C The implementation representations shall unambiguously define the TSF to a level
of detail such that the TSF can be generated without further design decisions.

ADV_IMP.2.2C The implementation representations shall describe the relationships between
all portions of the implementation.

Evaluator action elements:

ADV_IMP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_IMP.2.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_INT TSF internals

Objectives

477 This family of components deals with the internal structure of the TSF.
Requirements are established for modularity, the layering of the software
architecture to separate levels of abstraction and minimisation of circular
dependencies, and the minimisation from the TSF of software that is not TSP
enforcing.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 128 of 232 Version 1.00 96/01/31

478 Modular design reduces the interdependence between elements of the TSF and thus
reduces the risk that a change or error in one module will have effects throughout
the TOE. Thus, a modular design provides the basis for determining the scope of
interaction with other elements of the TSF, provides for increased assurance that
unexpected effects do not occur, and also provides the basis for designing and
evaluating test suites.

479 Design complexity affects how difficult it is to understand the design of the TOE.
The simpler the design, the more assurance is gained that there are no hidden
vulnerabilities in the design and that the high-level protection requirements are
accurately and completely instantiated in the lower level design and the
implementation.

480 Design complexity minimisation provides a part of the assurance that the code is
understood; the less complex the code in the TSF, the greater the likelihood that the
design of the TSF is comprehensible. Design complexity minimisation is a key
characteristic of a reference validation mechanism.

Application notes

481 The term “relevant representation” is used in these components to cover the need
for an evaluator to check for the appropriate issue (e.g., modularity, complexity) at
whichever level of representation (e.g., high-level design, implementation) the
requirements are being invoked.

482 The term “portions of the TSF” is used to represent parts of the TSF with a varying
granularity based on the available TSF representations. The functional specification
allows identification in terms of interfaces, the high-level design allows
identification in terms of subsystems, the low-level design allows identification in
terms of modules, and the implementation representation allows identification in
terms of implementation units (e.g., source code files).

ADV_INT.1 Modularity

Dependencies:

 ADV_IMP.1 Subset of the implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

Developer action elements:

ADV_INT.1.1D The developer shall design the TSF in a modular fashion that avoids
unnecessary interactions between the modules of the design.

ADV_INT.1.2D The developer shall provide an architectural description.

Content and presentation of evidence elements:

ADV_INT.1.1C The architectural description shall identify the modules of the TSF.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 129 of 232

ADV_INT.1.2C The architectural description shall describe the purpose, interface,
parameters, and effects of each module in the TSF.

ADV_INT.1.3C The architectural description shall describe how the TSF design provides for
largely independent modules that avoid unnecessary interactions.

Evaluator action elements:

ADV_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_INT.1.2E The evaluator shall check the relevant representations for compliance with the
architectural description.

ADV_LLD Low-level design

Objectives

483 The low-level design of a TOE provides a description of the internal workings of
the TSF in terms of modules and their interrelationships and dependencies. The
low-level design provides assurance that the TSF subsystems have been correctly
and effectively refined.

484 For each module of the TSF, the low-level design describes its purpose, function,
interfaces, dependencies, and the implementation of any TSP enforcing functions.

Application notes

485 In addition to the content indicated in the following requirements, the low-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

486 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the low-level design. In the course of
the low-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

487 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 130 of 232 Version 1.00 96/01/31

requirements and also each security function must not interfere with the operation
of any other security function.

488 The term “TSP enforcing function” refers to any function that contributes to TSP
enforcement. The term “TSP enforcing modules” similarly refers to any module
that contributes to TSP enforcement.

ADV_LLD.1 Descriptive low-level design

Dependencies:

 ADV_HLD.1 Descriptive high-level design

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_LLD.1.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.1.1C The presentation of the low-level design shall be informal.

ADV_LLD.1.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.1.3C The low-level design shall describe the purpose of each module.

ADV_LLD.1.4C The low-level design shall define the interrelationships between the modules in
terms of provided functionality and dependencies on other modules.

ADV_LLD.1.5C The low-level design shall describe the implementation of all TSP enforcing
functions.

ADV_LLD.1.6C The low-level design shall describe the interfaces of each module in terms of their
syntax and semantics.

ADV_LLD.1.7C The low-level design shall provide a demonstration that the TSF is completely
represented.

ADV_LLD.1.8C The low-level design shall identify the interfaces of the modules of the TSF visible
at the external interface of the TSF.

Evaluator action elements:

ADV_LLD.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_LLD.1.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 131 of 232

ADV_RCR Representation correspondence

Objectives

489 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

Application notes

490 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

491 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and
then make a determination as to whether the functional requirements in the ST have
been satisfied.

492 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

ADV_RCR.2 Semiformal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.2.1D The developer shall provide evidence that the least abstract TSF representation
provided is an accurate, consistent, and complete instantiation of the functional
requirements expressed in the ST.

Content and presentation of evidence elements:

ADV_RCR.2.1C For each adjacent pair of TSF representations, the evidence shall demonstrate that
all parts of the more abstract representation are refined in the less abstract
representation.

ADV_RCR.2.2C For each adjacent pair of TSF representations, where portions of both
representations are at least semiformally specified, the demonstration of

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 132 of 232 Version 1.00 96/01/31

correspondence between those portions of the representations shall be
semiformal.

ADV_RCR.2.3C For each adjacent pair of TSF representations, where portions of either
representation are informally specified the demonstration of correspondence
between those portions of the representations may be informal.

Evaluator action elements:

ADV_RCR.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.2.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation provided to
ensure accuracy, consistency, and completeness.

AGD Guidance documents

493 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

AGD_ADM Administrator guidance

Objectives

494 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

Application notes

495 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

496 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant
to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 133 of 232

requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a secure
manner.

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and privileges
that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and effective
use of the security functions within the TSF.

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters, and
those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security functions
interact.

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to configure
the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may be
used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of procedures
relevant to the administration of security.

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents supplied
for evaluation.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 134 of 232 Version 1.00 96/01/31

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

AGD_USR User guidance

Objectives

497 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

498 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

Application notes

499 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

500 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 135 of 232

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions provided
by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that should
be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered for
evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC Life cycle support

501 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during development and maintenance.
Confidence in the correspondence between the TOE security requirements and the
TOE is greater if security analysis and the production of the evidence are done on
a regular basis as an integral part of the development and maintenance activities.

ALC_DVS Development security

Objectives

502 Development security is concerned with physical, procedural, personnel, and other
security measures that may be used in the development environment to protect the
TOE. It includes the physical security of the development location and any
procedures used to select development staff.

Application notes

503 The evaluator should decide whether there is a need for visiting the user’s site in
order to confirm that the requirements of this family are met.

ALC_DVS.1 Identification of security measures

Dependencies:

No dependencies.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 136 of 232 Version 1.00 96/01/31

Developer action elements:

ALC_DVS.1.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.1.1C The development security documentation shall describe the physical, procedural,
personnel, and other security measures that are used to protect the confidentiality
and integrity of the TOE during its development.

ALC_DVS.1.2C The development security documentation shall provide evidence that these security
measures are followed during the development and maintenance of the TOE.

Evaluator action elements:

ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_DVS.1.2E The evaluator shall check whether the security measures are being applied.

ALC_LCD Life cycle definition

Objectives

504 Poorly controlled development and maintenance can result in a flawed
implementation of a TOE (or a TOE that does not meet all of its security
requirements). This, in turn, results in security violations. Therefore, it is important
that a model for the development and maintenance of a TOE be established as early
as possible in the TOE’s life-cycle.

505 Using a model for the development and maintenance of a TOE does not guarantee
that the TOE will be free of flaws, nor does it guarantee that the TOE will meet all
of its security functional requirements. It is possible that the model chosen was
insufficient or inadequate and therefore no benefits in the quality of the TOE could
be observed. Using a life-cycle model that has been approved by some group of
experts (e.g., academic experts, standards bodies) improves the chances that the
development and maintenance models will contribute to the overall quality of the
TOE.

Application notes

506 Although life-cycle definition deals with the maintenance of the TOE and hence
with aspects becoming relevant after the completion of the evaluation, its
evaluation adds assurance through an analysis the life-cycle information for the
TOE provided at the time of the evaluation.

507 A life-cycle model encompasses the procedures, tools and techniques used to
develop and maintain the TOE.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 137 of 232

508 A standardised life-cycle model is a model that has been approved by some group
of experts (e.g., academic experts, standards bodies).

509 A measurable life-cycle model is a model with some arithmetic parameters so that
e.g. the coding standards can be measured.

ALC_LCD.2 Standardised life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the development and
maintenance of the TOE.

ALC_LCD.2.2D The developer shall produce life-cycle definition documentation.

ALC_LCD.2.3D The developer shall use a standardised life-cycle model to develop and
maintain the TOE.

Content and presentation of evidence elements:

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model used to develop
and maintain the TOE.

ALC_LCD.2.2C The life-cycle definition documentation shall explain why the model was
chosen and how it is used to develop and maintain the TOE.

ALC_LCD.2.3C The life-cycle definition documentation shall demonstrate compliance with the
standardised life-cycle model.

Evaluator action elements:

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT Tools and techniques

Objectives

510 Tools and techniques is an aspect of selecting tools which are used to develop,
analyse and implement the TOE. It includes requirements to prevent ill-defined,
inconsistent or incorrect development tools from being used to develop the TOE.
This includes, but is not limited to programming languages, documentation,
implementation standards, and other parts of the TOE like supporting runtime
libraries.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 138 of 232 Version 1.00 96/01/31

Application notes

511 There is a requirement for well-defined development tools. These are tools which
have been shown to be well understood and applicable without the need for
intensive further clarification. For example, programming languages and computer
aided design (CAD) systems that are based on an a standard published by standards
bodies are considered to be well-defined.

512 Tools and techniques distinguishes between the implementation standards applied
by the developer and the implementation standards for “all parts of the TOE” which
additionally includes third party software, hardware, or firmware.

513 The requirement in ALC_TAT.1.2C is specifically applicable to programming
languages so as to ensure that all statements in the source code have an
unambiguous meaning.

ALC_TAT.2 Compliance with implementation standards

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements:

ALC_TAT.2.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.2.2D The developer shall document the selected implementation dependent options of
the development tools.

ALC_TAT.2.3D The developer shall describe the implementation standards to be applied.

Content and presentation of evidence elements:

ALC_TAT.2.1C Any development tools used for implementation shall be well-defined.

ALC_TAT.2.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

Evaluator action elements:

ALC_TAT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT.2.2E The evaluator shall confirm that the implementation standards have been
applied.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 139 of 232

ATE Tests

514 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional
requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

515 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

516 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

517 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_COV Coverage

Objectives

518 This family addresses those aspects of testing that deal with completeness of
testing. That is, it addresses the extent to which the TOE security functions are
tested, whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates as specified, and whether or not the order in which testing proceeds
correctly accounts for functional dependencies between the portions of the TOE
being tested.

Application notes

519 The specific documentation required by the coverage components will be
determined, in most cases, by the documentation stipulated in the level of
ATE_FUN that is specified. However, the PP/ST author will need to give
consideration to the proper set of test evidence and documentation required.

ATE_COV.2 Complete coverage - rigorous

Objectives

520 The objective is that testing completely address the security functions.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 140 of 232 Version 1.00 96/01/31

521 In this component, the objective is to ensure that there is a detailed correspondence
between the tests and the security functions.

Application notes

522 The analysis of the test coverage in support of the detailed correspondence can be
informal.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.2.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements:

ATE_COV.2.1C The analysis of the test coverage shall demonstrate that the tests identified in the
test documentation cover the TSF.

ATE_COV.2.2C The analysis of the test coverage shall demonstrate the correspondence between the
security functions and the tests identified in the test documentation.

Evaluator action elements:

ATE_COV.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_DPT Depth

Objectives

523 The components in this family deal with the level of detail to which the TOE is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

524 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internals of the TOE, are more likely to discover any malicious
code that has been inserted.

Application notes

525 The specific amount and type of documentation and evidence will, in general, be
determined by that required by level of ATE_FUN selected. However, the PP/ST
author will need to give consideration to the proper set of test evidence and
documentation required.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 141 of 232

ATE_DPT.3 Testing - low level design

Objectives

526 The functional specification of a TOE provides a high level description of the
external workings of the TSF. Testing at the level of the functional specification, in
order to demonstrate the presence of any flaws, provides assurance that the TSF
functional specification has been correctly realised.

527 The subsystems of a TOE provide a high level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

528 The modules of a TOE provide a description of the internal workings of the TSF.
Testing at the level of the modules, in order to demonstrate the presence of any
flaws, provides assurance that the TSF modules have been correctly realised.

Application notes

529 The functional specification representation is used to express the notion of the most
abstract representation of the TSF.

530 The developer is expected to describe the testing of the high level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts. While the developer
is not required to actually have “subsystems”, the developer is expected to represent
a similar notion of decomposition.

531 The developer is expected to describe the testing of the low level design of the TSF
in terms of “modules”. The term “modules” is used to express the notion of
decomposing each of the “subsystems” of the TSF into a relatively small number of
parts. While the developer is not required to actually have “modules”, the developer
is expected to represent a similar notion of decomposition.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_LLD.1 Descriptive low-level design

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.3.1D The developer shall provide the analysis of the depth of testing.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 142 of 232 Version 1.00 96/01/31

Content and presentation of evidence elements:

ATE_DPT.3.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TOE operates in
accordance with the functional specification, high level design, and low level
design of the TSF.

Evaluator action elements:

ATE_DPT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_FUN Functional tests

Objectives

532 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the functional requirements of its PP/ST. Functional testing provides
assurance that the TSF satisfies at least the security functional requirements,
although it cannot establish that the TSF does no more than what was specified. The
family “Functional tests” is focused on the type and amount of documentation or
support tools required, and what is to be demonstrated through testing.

533 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

Application notes

534 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results is
derived from the test inputs.

535 The developer shall eliminate all security relevant flaws discovered during testing.

536 The developer shall test the TSF to determine that no new security relevant flaws
have been introduced as a result of eliminating discovered security relevant flaws.

ATE_FUN.1 Functional testing

Objectives

537 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

Dependencies:

ATE_COV.1 Complete coverage - informal

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 143 of 232

ATE_DPT.1 Testing - functional specification

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions, and
test results.

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the goal
of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and describe
the scenarios for testing each security function.

ATE_FUN.1.4C The test results in the test documentation shall show the expected results of each
test.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate that each
security function operates as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND Independent testing

Objectives

538 The objective is to demonstrate that the security functions perform as specified.

539 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

540 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

541 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 144 of 232 Version 1.00 96/01/31

augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.2 Independent testing - sample

Objectives

542 The objective is to demonstrate that the security functions perform as specified.

543 In this component, the objective is to select and repeat a sample of the developer
testing.

Application notes

544 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

545 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

546 The developer is required to perform testing and to provide test documentation and
test results. This is addressed by the ATE_FUN family.

547 Testing may be selective and shall be based upon all available documentation.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

ATE_FUN.1 Functional testing

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.2.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.2.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 145 of 232

ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify the
developer test results.

AVA Vulnerability assessment

548 The class “Vulnerability assessment” encompasses four families: covert channel
analysis (AVA_CCA), misuse (AVA_MSU), strength of TOE security functions
(AVA_SOF) and vulnerability analysis (AVA_VLA). The class addresses the
existence of exploitable covert channels, the misuse or incorrect configuration of
the TOE, the ability for all critical security mechanisms to withstand direct attack
and the definition and assessment of penetration tests to exploit vulnerabilities
introduced in the development or the operation of the TOE.

AVA_CCA Covert channel analysis

Objectives

549 Covert channel analysis is carried out to determine the existence and potential
capacity of unintended signalling channels that may be exploited by malicious
code.

550 The assurance requirements address the threat that unintended and exploitable
signalling paths exist which may be exercised to violate the security policy.

Application notes

551 Channel capacity estimations are based upon informal engineering measurements,
as well as actual test measurements.

552 Details of the assumptions upon which the covert channel analysis is based shall be
given, e.g., processor speed, configuration, memory, and cache size.

553 Test parameters details are (e.g., processor speed, memory and cache size), relevant
configuration parameters, how the channel was exercised, used to obtain the
capacity during testing.

554 The selective validation of the covert channel analysis through testing allows the
evaluator the opportunity to verify any aspect of the covert channel analysis (e.g.,
identification, capacity estimation, elimination, monitoring, and exploitation
scenarios). This does not impose a requirement to demonstrate the entire set of
covert channel analysis results.

555 If there are no information flow control policies in the ST, this family of assurance
requirements is no longer applicable since this family only applies to information
flow control policies. Even if there are no specific functional requirements (e.g.,
FDP_IFF.1 to FDP_IFF.3) for eliminating, limiting, or monitoring covert channels,
this family still requires the identification of covert channels.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 146 of 232 Version 1.00 96/01/31

AVA_CCA.1 Covert channel analysis

Objectives

556 The objective is to identify covert channels which are identifiable through analysis.

557 In this component, the objective is to perform informal search for covert storage
channels.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_IMP.1 Subset of the implementation of the TSF

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_CCA.1.1D The developer shall conduct a search for covert channels for each information
flow control policy.

AVA_CCA.1.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements:

AVA_CCA.1.1C The analysis documentation shall identify covert channels.

AVA_CCA.1.2C The analysis documentation shall describe the procedures used for
determining the existence of covert channels, and the information needed to
carry out the covert channel analysis.

AVA_CCA.1.3C The analysis documentation shall describe all assumptions made during the
covert channel analysis.

AVA_CCA.1.4C The analysis documentation shall describe the method used for estimating
channel capacity, which shall be based on worst case scenarios.

AVA_CCA.1.5C The analysis documentation shall describe the worst case exploitation scenario
for each identified covert channel.

AVA_CCA.1.6C The analysis documentation shall provide evidence that the method used to
identify covert channels is informal.

Evaluator action elements:

AVA_CCA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 147 of 232

AVA_CCA.1.2E The evaluator shall confirm that the results of the covert channels analysis
meet the functional requirements.

AVA_CCA.1.3E The evaluator shall selectively validate the covert channel analysis through
testing.

AVA_MSU Misuse

Objectives

558 Misuse investigates whether the TOE can be configured or used in a manner which
is insecure but which an administrator or end-user of the TOE would reasonably
believe to be secure.

559 The objective is to minimise the risk of human or other errors in operation which
may deactivate, disable, or fail to activate security functions.

560 The objective is to minimise the probability of configuring or installing the TOE in
a way which is insecure, without the end user or administrator being able to
recognise it.

Application notes

561 Conflicting, misleading or incomplete guidance may result in a user of the TOE
believing that the TOE is secure, when it is not. Conflicting guidance can result in
vulnerabilities.

562 An example of conflicting guidance would be two guidance instructions which
imply different outcomes when the same input is supplied.

563 An example of misleading guidance would be the description of a single guidance
instruction which could be parsed in more than one way, one of which may result
in an insecure state.

564 An example of completeness would be referencing assertions of dependencies on
external security measures e.g., such as external procedural, physical and personnel
controls.

AVA_MSU.2 Misuse analysis - independent verification

Objectives

565 The objective is to ensure that conflicting guidance in the guidance documentation
have been addressed.

566 In this component, the objective is to provide additional assurance by performing
an independent analysis.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 148 of 232 Version 1.00 96/01/31

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.2.1D The developer shall document an analysis of the guidance documentation for
conflicting and incomplete guidance.

AVA_MSU.2.2D The developer shall ensure that the guidance documentation contains no misleading
or unreasonable guidance.

Content and presentation of evidence elements:

AVA_MSU.2.1C The analysis documentation shall provide a rationale that demonstrates that the
guidance is not conflicting and is complete.

Evaluator action elements:

AVA_MSU.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_MSU.2.2E The evaluator shall determine that there is no misleading or unreasonable guidance
in the guidance documentation.

AVA_MSU.2.3E The evaluator shall repeat any procedures in the guidance documentation to ensure
that they produce the documented results.

AVA_MSU.2.4E The evaluator shall perform independent testing to confirm that the TOE can be
configured and operated securely using only the guidance documentation.

AVA_SOF Strength of TOE security functions

Objectives

567 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
functions claim.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 149 of 232

Application notes

568 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

569 The strength of TOE security functions evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

570 The strength of a function is rated ‘basic’ if the analysis shows that the function
provides adequate protection against unintended or casual breach of TOE security
by attackers possessing a low attack potential.

571 The strength of a function is rated ‘medium’ if the analysis shows that the function
provides adequate protection against attackers possessing a moderate attack
potential.

572 The strength of a function is rated ‘high’ if the analysis shows that the function
provides adequate protection against attackers possessing a high attack potential.

573 The attack potential is derived from the attacker’s expertise, opportunities,
resources, and motivation.

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

Developer action elements:

AVA_SOF.1.1D The developer shall identify all TOE security mechanisms for which a strength of
TOE security function analysis is appropriate.

AVA_SOF.1.2D The developer shall perform a strength of TOE security function analysis for each
identified mechanism.

Content and presentation of evidence elements:

AVA_SOF.1.1C The strength of TOE security function analysis shall determine the impact of the
identified TOE security mechanisms on the ability of the TOE security functions to
counter the threats.

AVA_SOF.1.2C The strength of TOE security function analysis shall demonstrate that the identified
strength of the security functions is consistent with the security objectives of the
TOE.

AVA_SOF.1.3C Each strength claim shall be either basic, medium, or high.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 150 of 232 Version 1.00 96/01/31

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that all TOE security mechanisms requiring a strength
analysis have been identified.

AVA_SOF.1.3E The evaluator shall confirm that the strength claims are correct.

AVA_VLA Vulnerability analysis

Objectives

574 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or e.g., by flaw hypotheses, could allow malicious users to violate the TSP.

575 Vulnerability analysis deals with the threats that a malicious user will be able to
discover flaws that will allow access to resources (e.g., data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

Application notes

576 The vulnerability analysis should consider the contents of all the TOE deliverables
for the targeted evaluation assurance level.

577 Obvious vulnerabilities are those that allow common attacks or those that might be
suggested by the TOE interface description. Obvious vulnerabilities are those in the
public domain, details of which should be known to a developer or available from
an evaluation oversight body.

578 The evidence identifies all the TOE documentation upon which the search for flaws
was based.

AVA_VLA.3 Relatively resistant

Objectives

579 A vulnerability analysis is performed by the developer to ascertain the presence of
“obvious” security vulnerabilities.

580 The objective is to confirm that no identified security vulnerabilities can be
exploited in the intended environment for the TOE.

581 An independent vulnerability analysis is performed by the evaluator, which goes
beyond the “obvious” security vulnerabilities. The analysis considers the
deliverables available for the targeted evaluation assurance level.

CCEB-96/013_D EAL 5 - Semiformally designed and tested

96/01/31 Version 1.00 Page 151 of 232

582 In addition, the independent vulnerability analysis performed by the evaluator is
based on analytical techniques which are employed to discover vulnerabilities that
would require sophisticated attackers.

583 The TOE must be shown to be relatively resistant to penetration attack.

Application notes

584 Obvious vulnerabilities are those which are open to exploitation which requires a
minimum of understanding of the TOE, skill, technical sophistication, and
resources.

585 Independent vulnerability analysis is based on detailed technical information. The
attacker is assumed to be thoroughly familiar with the specific implementation of
the TOE. The attacker is presumed to have a moderate level of technical
sophistication.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.3.1D The developer shall perform and document an analysis of the TOE deliverables
searching for obvious ways in which a user can violate the TSP.

AVA_VLA.3.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.3.1C The evidence shall show, for each vulnerability, that the vulnerability cannot be
exploited in the intended environment for the TOE.

AVA_VLA.3.2C The documentation shall justify that the TOE, with the identified
vulnerabilities, is relatively resistant to penetration attacks.

Evaluator action elements:

AVA_VLA.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_VLA.3.2E The evaluator shall conduct penetration testing, based on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

EAL 5 - Semiformally designed and tested CCEB-96/013_D

Page 152 of 232 Version 1.00 96/01/31

AVA_VLA.3.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.3.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of identified
vulnerabilities in the target environment.

AVA_VLA.3.5E The evaluator shall determine that the TOE is relatively resistant to
penetration attacks.

192CCEB-96/013_D

96/01/31 Version 1.00 Page 153 of 232

EAL 6

Semiformally verified design and tested

ACM Configuration management

586 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_AUT CM automation

Objectives

587 The objective of introducing automated CM tools is to increase the efficiency of the
CM system, by simultaneously increasing the reliability of the CM system and
reducing the cost of operating it. While both automated and manual CM systems
can be bypassed, ignored, or insufficient to prevent unauthorised modification,
automated systems are less susceptible to human error or negligence. In addition,
while a manual CM system can accomplish all of the same things that an automated
system can, manual systems are typically more costly to operate on an ongoing
basis.

Application notes

588 For ACM_AUT.1 and ACM_AUT.2, there is a requirement that the automated CM
system control changes to the implementation representation of the TOE. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

ACM_AUT.2 Complete CM automation

Objectives

589 In development environments where the configuration items are complex or are
being developed by multiple developers, it is difficult to control changes without
the support of automated tools. In particular, these automated tools need to be able
to support the numerous changes that occur during development and ensure that
those changes are performed by authorised developers before their application. It is

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 154 of 232 Version 1.00 96/01/31

the objective of this component to ensure that all configuration items are controlled
through automated means.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_AUT.2.1D The developer shall provide a CM plan.

Content and presentation of evidence elements:

ACM_AUT.2.1C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.2.2C The CM plan shall describe how the automated tools are used in the CM system.

ACM_AUT.2.3C The CM system shall provide an automated means to ensure that only
authorised changes are made to the TOE implementation representation, and
to all other configuration items.

ACM_AUT.2.4C The CM system shall provide an automated means to support the generation of any
supported TSF from its implementation representation.

ACM_AUT.2.5C The CM system shall provide an automated means to support the comparison of any
two supported TSF versions, to ascertain the changes.

ACM_AUT.2.6C The CM system shall provide an automated means to identify all other
configuration items that are affected by the modification of a given
configuration item.

Evaluator action elements:

ACM_AUT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_CAP CM capabilities

Objectives

590 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

591 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 155 of 232

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

592 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

593 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The
evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

594 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

595 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.4 Advanced support

Objectives

596 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

597 Assurance of TOE integrity may be gained by controlling the ability to modify the
TOE configuration items. Ensuring proper functionality and use of the CM system
also provides assurance that the CM system is correctly enforcing the integrity of
the TOE.

598 The ability to generate previous but still supported versions of the TOE is necessary
for the resolution of any new flaws discovered during operation.

599 The purpose of acceptance procedures is to confirm that any creation or
modification of TSF configuration items is authorised.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 156 of 232 Version 1.00 96/01/31

600 Integration procedures ensure that the introduction of modifications into the TSF is
performed in a controlled and complete manner.

601 Requiring that the CM system be able to identify the master copy of the material
used to generate the TSF helps to ensure that the integrity of this material is
preserved by the appropriate technical, physical and procedural safeguards.

Dependencies:

ACM_SCP.1 Minimal CM coverage

ALC_DVS.2 Sufficiency of security measures

Developer action elements:

ACM_CAP.4.1D The developer shall use a CM system.

ACM_CAP.4.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.4.1C The CM documentation shall include a configuration list, a CM plan, an
acceptance plan, and integration procedures.

ACM_CAP.4.2C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.4.3C The CM documentation shall describe the method used to uniquely identify the
TOE configuration items.

ACM_CAP.4.4C The CM plan shall describe how the CM system is used.

ACM_CAP.4.5C The CM documentation shall provide evidence that the CM system is working
properly.

ACM_CAP.4.6C The CM documentation shall provide evidence that all configuration items have
been and are being effectively maintained under the CM system.

ACM_CAP.4.7C The CM system shall ensure that only authorised changes are made to the TOE
configuration items.

ACM_CAP.4.8C The CM system shall support the generation of all supported versions of the TOE.

ACM_CAP.4.9C The acceptance plan shall describe the procedures used to accept modified or newly
created TSF configuration items as part of the TOE.

ACM_CAP.4.10C The integration procedures shall describe how the CM system is applied in the
TOE manufacturing process.

ACM_CAP.4.11C The CM system shall require that the person responsible for accepting a
configuration item into CM is not the person who developed it.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 157 of 232

ACM_CAP.4.12C The CM system shall permit clear identification of the TSF.

ACM_CAP.4.13C The CM system shall support the audit of all modifications to the TSF,
including as a minimum the originator, date, and time in the audit trail.

ACM_CAP.4.14C The CM system shall be able to identify the master copy of all material used to
generate the TSF.

ACM_CAP.4.15C The evidence shall justify that the use of the CM system is sufficient to ensure
that only authorised changes are made to the TOE.

ACM_CAP.4.16C The evidence shall justify that the integration procedures ensure that the
introduction of modifications into the TSF is performed in a controlled and
complete manner.

ACM_CAP.4.17C The evidence shall justify that the CM system is sufficient to ensure that the
person responsible for accepting a configuration item into CM is not the
person who developed it.

ACM_CAP.4.18C The evidence shall justify that the acceptance procedures provide for an
adequate and appropriate review of changes to TSF configuration items.

Evaluator action elements:

ACM_CAP.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_SCP CM scope

Objectives

602 The objective is to ensure that all necessary TOE configuration items are tracked by
the CM system. This helps to ensure that the integrity of these configuration items
is protected through the capabilities of the CM system.

603 The objectives of this family include the following:

a) ensuring that the TOE implementation representation is tracked;

b) ensuring that all necessary documentation, including problem reports, are
tracked during development and operation;

c) ensuring that configuration options (e.g. compiler switches) are tracked; and

d) ensuring that development tools are tracked.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 158 of 232 Version 1.00 96/01/31

Application notes

604 For ACM_SCP.1 and the higher components, there is a requirement that the TOE
implementation representation be tracked by the CM system. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

605 For ACM_SCP.2 and ACM_SCP.3, there is a requirement that security flaws be
tracked by the CM system. This requires that information regarding previous
security flaws and their resolution be maintained, as well as details regarding
current security flaws.

606 For ACM_SCP.3, there is a requirement that development tools and other related
information be tracked by the CM system. Examples of development tools are
programming languages and compilers. Information pertaining to TOE generation
items (such as compiler options, installation/generation options, and build options)
is an example of information relating to development tools.

ACM_SCP.3 Development tools CM coverage

Objectives

607 A CM system can control changes only to those items that have been placed under
CM. At a minimum, the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation should be placed under CM.

608 The ability to track security flaws under CM ensures that security flaw reports are
not lost or forgotten, and allows a developer to track security flaws to their
resolution.

609 Development tools play an important role in ensuring the production of a quality
version of the TSF. Therefore, it is important to control modifications to these tools.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_SCP.3.1D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_SCP.3.1C As a minimum, the following shall be tracked by the CM system: the TOE
implementation representation, design documentation, test documentation, user
documentation, administrator documentation, CM documentation, security flaws,
and development tools and related information.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 159 of 232

ACM_SCP.3.2C The CM documentation shall describe how configuration items are tracked by the
CM system.

Evaluator action elements:

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADO Delivery and operation

610 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

ADO_IGS Installation, generation, and start-up

Objectives

611 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started in a secure manner as intended by
the developer.

Application notes

612 The generation requirements are applicable only to TOEs that provide the ability to
generate an operational TOE from source or object code.

613 The installation, generation, and start-up procedures may exist as a separate
document, but would typically be grouped with other administrative guidance.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures to be used for the secure installation,
generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 160 of 232 Version 1.00 96/01/31

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV Development

614 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for
a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

615 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

ADV_FSP Functional specification

Objectives

616 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all
the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

617 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

618 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would
allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 161 of 232

619 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of
another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

620 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

621 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the
correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

622 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP
model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

623 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to
be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 162 of 232 Version 1.00 96/01/31

ADV_FSP.5 Property specification by model interpretation

Application notes

624 The requirement for both an informal and semiformal functional specification is
necessary to allow an evaluator to effectively comprehend and evaluate the
semiformal representation using the informal representation for support.

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.5.1D The developer shall provide a functional specification.

ADV_FSP.5.2D The developer shall provide a TSP.

ADV_FSP.5.3D The developer shall provide a formal TSP model.

ADV_FSP.5.4D The developer shall provide a demonstration of correspondence between the formal
TSP model and the functional specification.

Content and presentation of evidence elements:

ADV_FSP.5.1C The functional specification shall describe the TSF using both an informal and
semiformal style.

ADV_FSP.5.2C The functional specification shall include both an informal and semiformal
presentation of syntax, effects, exceptions, error messages, and semantics of all
external TSF interfaces.

ADV_FSP.5.3C The functional specification shall include evidence that demonstrates that the TSF
is completely represented.

ADV_FSP.5.4C The demonstration of correspondence between the formal TSP model and the
functional specification shall describe how the functional specification satisfies the
formal TSP model.

ADV_FSP.5.5C The demonstration of correspondence between the formal TSP model and the
functional specification shall show that there are no security functions in the
functional specification that conflict with the formal TSP model.

ADV_FSP.5.6C The formal TSP model shall describe the rules and characteristics of all policies of
the TSP that can be modeled.

ADV_FSP.5.7C The formal TSP model shall include a rationale that demonstrates that policies of
the TSP that are modeled are satisfied by the formal TSP model.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 163 of 232

ADV_FSP.5.8C The formal TSP model shall justify that all policies of the TSP that can be modeled
are represented in the formal TSP model.

ADV_FSP.5.9C The evidence shall justify that the informal and semiformal functional
specifications are consistent.

Evaluator action elements:

ADV_FSP.5.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.5.2E The evaluator shall determine that the functional specification is consistent with the
TSP.

ADV_FSP.5.3E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_HLD High-level design

Objectives

625 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e., subsystems) and relates these units to the functions that they
contain. The high-level design provides assurance that the TOE provides an
architecture appropriate to implement the claimed functional requirements.

626 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function and
identifies the security functions enforced by the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Application notes

627 In addition to the content indicated in the following requirements, the high-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

628 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using
“layers”, “domains”, or “servers”.

629 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the high-level design. In the course of
the high-level design evaluation there are essentially three types of evaluator

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 164 of 232 Version 1.00 96/01/31

determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

630 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

631 The term “security functionality” is used to represent operations that a subsystem
performs that have some effect on the security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

632 The term “TSP enforcing subsystems” refers to a subsystem that contributes to the
enforcement of the TSP.

ADV_HLD.4 Semiformal high-level explanation

Dependencies:

 ADV_FSP.3 Semiformal security policy model

 ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements:

ADV_HLD.4.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.4.1C The presentation of the high-level design shall be semiformal.

ADV_HLD.4.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.4.3C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.4.4C The high-level design shall identify the interfaces of the subsystems of the TSF.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 165 of 232

ADV_HLD.4.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.4.6C The high-level design shall describe the separation of the TSF into TSP enforcing
and other subsystems.

ADV_HLD.4.7C The evidence shall justify that the identified means of achieving separation,
including any protection mechanisms, are sufficient to ensure a clear and
effective separation of TSP enforcing from non-TSP enforcing functions.

ADV_HLD.4.8C The evidence shall justify that the TSF mechanisms are sufficient to implement
the security functions.

Evaluator action elements:

ADV_HLD.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.4.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_IMP Implementation representation

Objectives

633 The description of the implementation in the form of source code, firmware,
hardware drawings, etc. captures the detailed internal workings of the TSF in
support of analysis.

Application notes

634 The implementation representation is used to express the notion of the least abstract
representation of the TSF, specifically the one that is used to create the TSF itself
without further design refinement. Source code which is then compiled or a
hardware drawing which is used to build the actual hardware are examples of parts
of an implementation representation.

635 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the implementation. In the course of
the implementation evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a more abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis is necessary.
However, since the implementation is the least abstract representation it is likely
that further analysis cannot be performed, unless the TSF representations have not
been evaluated in a usual order (i.e., most abstract to least abstract). If requirements

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 166 of 232 Version 1.00 96/01/31

are not addressed after the analysis of all TSF representations, this represents a
failure of the TOE evaluation. Note that this more comprehensive failure
determination requirement is realised in the Representation correspondence
(ADV_RCR) family.

636 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

637 It is expected that evaluators will use the implementation to directly support other
evaluation activities (e.g., vulnerability analysis, test coverage analysis). It is
expected that PP/ST authors will select a component that requires that the
implementation is complete and comprehensible enough to address the needs of all
other requirements included in the PP/ST.

ADV_IMP.3 Structured implementation of the TSF

Dependencies:

 ADV_INT.1 Modularity

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.3 Compliance with implementation standards - all parts

Developer action elements:

ADV_IMP.3.1D The developer shall provide the implementation representations for the entire TSF.

Content and presentation of evidence elements:

ADV_IMP.3.1C The implementation representations shall unambiguously define the TSF to a level
of detail such that the TSF can be generated without further design decisions.

ADV_IMP.3.2C The implementation representations shall describe the relationships between all
portions of the implementation.

ADV_IMP.3.3C The implementation representations shall be structured into small and
comprehensible sections.

Evaluator action elements:

ADV_IMP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_IMP.3.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 167 of 232

ADV_INT TSF internals

Objectives

638 This family of components deals with the internal structure of the TSF.
Requirements are established for modularity, the layering of the software
architecture to separate levels of abstraction and minimisation of circular
dependencies, and the minimisation from the TSF of software that is not TSP
enforcing.

639 Modular design reduces the interdependence between elements of the TSF and thus
reduces the risk that a change or error in one module will have effects throughout
the TOE. Thus, a modular design provides the basis for determining the scope of
interaction with other elements of the TSF, provides for increased assurance that
unexpected effects do not occur, and also provides the basis for designing and
evaluating test suites.

640 Design complexity affects how difficult it is to understand the design of the TOE.
The simpler the design, the more assurance is gained that there are no hidden
vulnerabilities in the design and that the high-level protection requirements are
accurately and completely instantiated in the lower level design and the
implementation.

641 Design complexity minimisation provides a part of the assurance that the code is
understood; the less complex the code in the TSF, the greater the likelihood that the
design of the TSF is comprehensible. Design complexity minimisation is a key
characteristic of a reference validation mechanism.

Application notes

642 The term “relevant representation” is used in these components to cover the need
for an evaluator to check for the appropriate issue (e.g., modularity, complexity) at
whichever level of representation (e.g., high-level design, implementation) the
requirements are being invoked.

643 The term “portions of the TSF” is used to represent parts of the TSF with a varying
granularity based on the available TSF representations. The functional specification
allows identification in terms of interfaces, the high-level design allows
identification in terms of subsystems, the low-level design allows identification in
terms of modules, and the implementation representation allows identification in
terms of implementation units (e.g., source code files).

ADV_INT.2 Layering

Application notes

644 This component introduces a reference monitor concept (i.e., small enough to be
analysed) by requiring the minimisation of complexity of the portions of the TSF
that enforce the access control and information flow policies identified in the TSP.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 168 of 232 Version 1.00 96/01/31

Dependencies:

 ADV_IMP.1 Subset of the implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

Developer action elements:

ADV_INT.2.1D The developer shall design and structure the TSF in a modular and layered
fashion that avoids unnecessary interactions between the modules of the
design, minimises mutual interactions between the layers of the design, and
minimises the complexity of the portions of the TSF that enforce any access
control and information flow policies.

ADV_INT.2.2D The developer shall provide an architectural description.

Content and presentation of evidence elements:

ADV_INT.2.1C The architectural description shall identify the modules of the TSF and the
portions of the TSF that enforce any access control and information flow
policies.

ADV_INT.2.2C The architectural description shall describe the purpose, interface, parameters, and
effects of each module of the TSF.

ADV_INT.2.3C The architectural description shall describe how the TSF design provides for largely
independent modules that avoid unnecessary interactions.

ADV_INT.2.4C The architectural description shall describe the layering architecture.

ADV_INT.2.5C The architectural description shall show that mutual interactions have been
eliminated or minimised, and justify those that remain.

ADV_INT.2.6C The architectural description shall describe how the portions of the TSF that
enforce any access control and information flow policies have been structured
to minimise complexity.

Evaluator action elements:

ADV_INT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_INT.2.2E The evaluator shall check the relevant representations for compliance with the
architectural description.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 169 of 232

ADV_LLD Low-level design

Objectives

645 The low-level design of a TOE provides a description of the internal workings of
the TSF in terms of modules and their interrelationships and dependencies. The
low-level design provides assurance that the TSF subsystems have been correctly
and effectively refined.

646 For each module of the TSF, the low-level design describes its purpose, function,
interfaces, dependencies, and the implementation of any TSP enforcing functions.

Application notes

647 In addition to the content indicated in the following requirements, the low-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

648 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the low-level design. In the course of
the low-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

649 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

650 The term “TSP enforcing function” refers to any function that contributes to TSP
enforcement. The term “TSP enforcing modules” similarly refers to any module
that contributes to TSP enforcement.

ADV_LLD.2 Semiformal low-level design

Dependencies:

 ADV_HLD.3 Semiformal high-level design

 ADV_RCR.2 Semiformal correspondence demonstration

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 170 of 232 Version 1.00 96/01/31

Developer action elements:

ADV_LLD.2.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.2.1C The presentation of the low-level design shall be semiformal.

ADV_LLD.2.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.2.3C The low-level design shall describe the purpose of each module.

ADV_LLD.2.4C The low-level design shall define the interrelationships between the modules in
terms of provided functionality and dependencies on other modules.

ADV_LLD.2.5C The low-level design shall describe the implementation of all TSP enforcing
functions.

ADV_LLD.2.6C The low-level design shall describe the interfaces of each module in terms of their
syntax and semantics.

ADV_LLD.2.7C The low-level design shall provide a demonstration that the TSF is completely
represented.

ADV_LLD.2.8C The low-level design shall identify the interfaces of the modules of the TSF visible
at the external interface of the TSF.

ADV_LLD.2.9C The low-level design shall describe the separation of the TSF into TSP
enforcing and other modules.

Evaluator action elements:

ADV_LLD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_LLD.2.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_RCR Representation correspondence

Objectives

651 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 171 of 232

Application notes

652 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

653 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and
then make a determination as to whether the functional requirements in the ST have
been satisfied.

654 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

ADV_RCR.2 Semiformal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.2.1D The developer shall provide evidence that the least abstract TSF representation
provided is an accurate, consistent, and complete instantiation of the functional
requirements expressed in the ST.

Content and presentation of evidence elements:

ADV_RCR.2.1C For each adjacent pair of TSF representations, the evidence shall demonstrate that
all parts of the more abstract representation are refined in the less abstract
representation.

ADV_RCR.2.2C For each adjacent pair of TSF representations, where portions of both
representations are at least semiformally specified, the demonstration of
correspondence between those portions of the representations shall be semiformal.

ADV_RCR.2.3C For each adjacent pair of TSF representations, where portions of either
representation are informally specified the demonstration of correspondence
between those portions of the representations may be informal.

Evaluator action elements:

ADV_RCR.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 172 of 232 Version 1.00 96/01/31

ADV_RCR.2.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation provided to
ensure accuracy, consistency, and completeness.

AGD Guidance documents

655 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

AGD_ADM Administrator guidance

Objectives

656 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

Application notes

657 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

658 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant
to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance
requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 173 of 232

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a secure
manner.

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and privileges
that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and effective
use of the security functions within the TSF.

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters, and
those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security functions
interact.

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to configure
the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may be
used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of procedures
relevant to the administration of security.

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents supplied
for evaluation.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 174 of 232 Version 1.00 96/01/31

AGD_USR User guidance

Objectives

659 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

660 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

Application notes

661 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

662 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions provided
by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that should
be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 175 of 232

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered for
evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC Life cycle support

663 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during development and maintenance.
Confidence in the correspondence between the TOE security requirements and the
TOE is greater if security analysis and the production of the evidence are done on
a regular basis as an integral part of the development and maintenance activities.

ALC_DVS Development security

Objectives

664 Development security is concerned with physical, procedural, personnel, and other
security measures that may be used in the development environment to protect the
TOE. It includes the physical security of the development location and any
procedures used to select development staff.

Application notes

665 The evaluator should decide whether there is a need for visiting the user’s site in
order to confirm that the requirements of this family are met.

ALC_DVS.2 Sufficiency of security measures

Dependencies:

No dependencies.

Developer action elements:

ALC_DVS.2.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.2.1C The development security documentation shall describe the physical, procedural,
personnel, and other security measures that are used to protect the confidentiality
and integrity of the TOE during its development.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 176 of 232 Version 1.00 96/01/31

ALC_DVS.2.2C The development security documentation shall provide evidence that these security
measures are followed during the development and maintenance of the TOE.

ALC_DVS.2.3C The evidence shall justify that the security measures are sufficient to protect
the confidentiality and integrity of the TOE.

Evaluator action elements:

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_DVS.2.2E The evaluator shall check whether the security measures are being applied.

ALC_LCD Life cycle definition

Objectives

666 Poorly controlled development and maintenance can result in a flawed
implementation of a TOE (or a TOE that does not meet all of its security
requirements). This, in turn, results in security violations. Therefore, it is important
that a model for the development and maintenance of a TOE be established as early
as possible in the TOE’s life-cycle.

667 Using a model for the development and maintenance of a TOE does not guarantee
that the TOE will be free of flaws, nor does it guarantee that the TOE will meet all
of its security functional requirements. It is possible that the model chosen was
insufficient or inadequate and therefore no benefits in the quality of the TOE could
be observed. Using a life-cycle model that has been approved by some group of
experts (e.g., academic experts, standards bodies) improves the chances that the
development and maintenance models will contribute to the overall quality of the
TOE.

Application notes

668 Although life-cycle definition deals with the maintenance of the TOE and hence
with aspects becoming relevant after the completion of the evaluation, its
evaluation adds assurance through an analysis the life-cycle information for the
TOE provided at the time of the evaluation.

669 A life-cycle model encompasses the procedures, tools and techniques used to
develop and maintain the TOE.

670 A standardised life-cycle model is a model that has been approved by some group
of experts (e.g., academic experts, standards bodies).

671 A measurable life-cycle model is a model with some arithmetic parameters so that
e.g. the coding standards can be measured.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 177 of 232

ALC_LCD.2 Standardised life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the development and
maintenance of the TOE.

ALC_LCD.2.2D The developer shall produce life-cycle definition documentation.

ALC_LCD.2.3D The developer shall use a standardised life-cycle model to develop and maintain the
TOE.

Content and presentation of evidence elements:

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model used to develop
and maintain the TOE.

ALC_LCD.2.2C The life-cycle definition documentation shall explain why the model was chosen
and how it is used to develop and maintain the TOE.

ALC_LCD.2.3C The life-cycle definition documentation shall demonstrate compliance with the
standardised life-cycle model.

Evaluator action elements:

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT Tools and techniques

Objectives

672 Tools and techniques is an aspect of selecting tools which are used to develop,
analyse and implement the TOE. It includes requirements to prevent ill-defined,
inconsistent or incorrect development tools from being used to develop the TOE.
This includes, but is not limited to programming languages, documentation,
implementation standards, and other parts of the TOE like supporting runtime
libraries.

Application notes

673 There is a requirement for well-defined development tools. These are tools which
have been shown to be well understood and applicable without the need for
intensive further clarification. For example, programming languages and computer

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 178 of 232 Version 1.00 96/01/31

aided design (CAD) systems that are based on an a standard published by standards
bodies are considered to be well-defined.

674 Tools and techniques distinguishes between the implementation standards applied
by the developer and the implementation standards for “all parts of the TOE” which
additionally includes third party software, hardware, or firmware.

675 The requirement in ALC_TAT.1.2C is specifically applicable to programming
languages so as to ensure that all statements in the source code have an
unambiguous meaning.

ALC_TAT.3 Compliance with implementation standards - all parts

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements:

ALC_TAT.3.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.3.2D The developer shall document the selected implementation dependent options of
the development tools.

ALC_TAT.3.3D The developer shall describe the implementation standards for all parts of the
TOE.

Content and presentation of evidence elements:

ALC_TAT.3.1C Any development tools used for implementation shall be well-defined.

ALC_TAT.3.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

Evaluator action elements:

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have been applied.

ATE Tests

676 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 179 of 232

requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

677 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

678 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

679 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_COV Coverage

Objectives

680 This family addresses those aspects of testing that deal with completeness of
testing. That is, it addresses the extent to which the TOE security functions are
tested, whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates as specified, and whether or not the order in which testing proceeds
correctly accounts for functional dependencies between the portions of the TOE
being tested.

Application notes

681 The specific documentation required by the coverage components will be
determined, in most cases, by the documentation stipulated in the level of
ATE_FUN that is specified. However, the PP/ST author will need to give
consideration to the proper set of test evidence and documentation required.

ATE_COV.3 Ordered testing

Objectives

682 The objective is that testing completely address the security functions.

683 The objective is to ensure that there is a detailed correspondence between the tests
and the security functions.

684 In this component, an additional objective is detailed justification that testing is
structured such as to avoid circular arguments about the correctness of the portions
of the TOE being tested.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 180 of 232 Version 1.00 96/01/31

Application notes

685 Ordering dependencies between tests can be of different forms e.g., test A provides
a result to test B; test A cannot run before test B, since it breaks something required
by test B; test failure in test B might be because of a failure in “untested” test A.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

ATE_COV.3.2D The developer shall provide an analysis of ordering dependencies of tests.

Content and presentation of evidence elements:

ATE_COV.3.1C The analysis of the test coverage shall demonstrate that the tests identified in the
test documentation cover the TSF.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate the correspondence between the
security functions and the tests identified in the test documentation.

ATE_COV.3.3C The analysis documentation shall justify that the correspondence is complete.

ATE_COV.3.4C The analysis documentation shall describe the ordering dependencies of tests.

ATE_COV.3.5C The analysis documentation shall justify that the test plans and procedures are
consistent with the ordering dependencies of tests.

Evaluator action elements:

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_DPT Depth

Objectives

686 The components in this family deal with the level of detail to which the TOE is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

687 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internals of the TOE, are more likely to discover any malicious
code that has been inserted.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 181 of 232

Application notes

688 The specific amount and type of documentation and evidence will, in general, be
determined by that required by level of ATE_FUN selected. However, the PP/ST
author will need to give consideration to the proper set of test evidence and
documentation required.

ATE_DPT.3 Testing - low level design

Objectives

689 The functional specification of a TOE provides a high level description of the
external workings of the TSF. Testing at the level of the functional specification, in
order to demonstrate the presence of any flaws, provides assurance that the TSF
functional specification has been correctly realised.

690 The subsystems of a TOE provide a high level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

691 The modules of a TOE provide a description of the internal workings of the TSF.
Testing at the level of the modules, in order to demonstrate the presence of any
flaws, provides assurance that the TSF modules have been correctly realised.

Application notes

692 The functional specification representation is used to express the notion of the most
abstract representation of the TSF.

693 The developer is expected to describe the testing of the high level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts. While the developer
is not required to actually have “subsystems”, the developer is expected to represent
a similar notion of decomposition.

694 The developer is expected to describe the testing of the low level design of the TSF
in terms of “modules”. The term “modules” is used to express the notion of
decomposing each of the “subsystems” of the TSF into a relatively small number of
parts. While the developer is not required to actually have “modules”, the developer
is expected to represent a similar notion of decomposition.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_LLD.1 Descriptive low-level design

ATE_FUN.1 Functional testing

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 182 of 232 Version 1.00 96/01/31

Developer action elements:

ATE_DPT.3.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.3.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TOE operates in accordance
with the functional specification, high level design, and low level design of the TSF.

Evaluator action elements:

ATE_DPT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_FUN Functional tests

Objectives

695 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the functional requirements of its PP/ST. Functional testing provides
assurance that the TSF satisfies at least the security functional requirements,
although it cannot establish that the TSF does no more than what was specified. The
family “Functional tests” is focused on the type and amount of documentation or
support tools required, and what is to be demonstrated through testing.

696 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

Application notes

697 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results is
derived from the test inputs.

698 The developer shall eliminate all security relevant flaws discovered during testing.

699 The developer shall test the TSF to determine that no new security relevant flaws
have been introduced as a result of eliminating discovered security relevant flaws.

ATE_FUN.1 Functional testing

Objectives

700 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 183 of 232

Dependencies:

ATE_COV.1 Complete coverage - informal

ATE_DPT.1 Testing - functional specification

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions, and
test results.

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the goal
of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and describe
the scenarios for testing each security function.

ATE_FUN.1.4C The test results in the test documentation shall show the expected results of each
test.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate that each
security function operates as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND Independent testing

Objectives

701 The objective is to demonstrate that the security functions perform as specified.

702 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

703 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 184 of 232 Version 1.00 96/01/31

704 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.2 Independent testing - sample

Objectives

705 The objective is to demonstrate that the security functions perform as specified.

706 In this component, the objective is to select and repeat a sample of the developer
testing.

Application notes

707 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

708 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

709 The developer is required to perform testing and to provide test documentation and
test results. This is addressed by the ATE_FUN family.

710 Testing may be selective and shall be based upon all available documentation.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

ATE_FUN.1 Functional testing

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.2.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 185 of 232

ATE_IND.2.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify the
developer test results.

AVA Vulnerability assessment

711 The class “Vulnerability assessment” encompasses four families: covert channel
analysis (AVA_CCA), misuse (AVA_MSU), strength of TOE security functions
(AVA_SOF) and vulnerability analysis (AVA_VLA). The class addresses the
existence of exploitable covert channels, the misuse or incorrect configuration of
the TOE, the ability for all critical security mechanisms to withstand direct attack
and the definition and assessment of penetration tests to exploit vulnerabilities
introduced in the development or the operation of the TOE.

AVA_CCA Covert channel analysis

Objectives

712 Covert channel analysis is carried out to determine the existence and potential
capacity of unintended signalling channels that may be exploited by malicious
code.

713 The assurance requirements address the threat that unintended and exploitable
signalling paths exist which may be exercised to violate the security policy.

Application notes

714 Channel capacity estimations are based upon informal engineering measurements,
as well as actual test measurements.

715 Details of the assumptions upon which the covert channel analysis is based shall be
given, e.g., processor speed, configuration, memory, and cache size.

716 Test parameters details are (e.g., processor speed, memory and cache size), relevant
configuration parameters, how the channel was exercised, used to obtain the
capacity during testing.

717 The selective validation of the covert channel analysis through testing allows the
evaluator the opportunity to verify any aspect of the covert channel analysis (e.g.,
identification, capacity estimation, elimination, monitoring, and exploitation
scenarios). This does not impose a requirement to demonstrate the entire set of
covert channel analysis results.

718 If there are no information flow control policies in the ST, this family of assurance
requirements is no longer applicable since this family only applies to information
flow control policies. Even if there are no specific functional requirements (e.g.,

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 186 of 232 Version 1.00 96/01/31

FDP_IFF.1 to FDP_IFF.3) for eliminating, limiting, or monitoring covert channels,
this family still requires the identification of covert channels.

AVA_CCA.2 Systematic covert channel analysis

Objectives

719 The objective is to identify covert channels which are identifiable through analysis.

720 In this component, the objective is to perform a systematic search for covert
channels.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_IMP.2 Implementation of the TSF

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_CCA.2.1D The developer shall conduct a search for covert channels for each information flow
control policy.

AVA_CCA.2.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements:

AVA_CCA.2.1C The analysis documentation shall identify covert channels.

AVA_CCA.2.2C The analysis documentation shall describe the procedures used for determining the
existence of covert channels, and the information needed to carry out the covert
channel analysis.

AVA_CCA.2.3C The analysis documentation shall describe all assumptions made during the covert
channel analysis.

AVA_CCA.2.4C The analysis documentation shall describe the method used for estimating channel
capacity, which shall be based on worst case scenarios.

AVA_CCA.2.5C The analysis documentation shall describe the worst case exploitation scenario for
each identified covert channel.

AVA_CCA.2.6C The analysis documentation shall provide evidence that the method used to
identify covert channels is systematic.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 187 of 232

Evaluator action elements:

AVA_CCA.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_CCA.2.2E The evaluator shall confirm that the results of the covert channels analysis meet the
functional requirements.

AVA_CCA.2.3E The evaluator shall selectively validate the covert channel analysis through testing.

AVA_MSU Misuse

Objectives

721 Misuse investigates whether the TOE can be configured or used in a manner which
is insecure but which an administrator or end-user of the TOE would reasonably
believe to be secure.

722 The objective is to minimise the risk of human or other errors in operation which
may deactivate, disable, or fail to activate security functions.

723 The objective is to minimise the probability of configuring or installing the TOE in
a way which is insecure, without the end user or administrator being able to
recognise it.

Application notes

724 Conflicting, misleading or incomplete guidance may result in a user of the TOE
believing that the TOE is secure, when it is not. Conflicting guidance can result in
vulnerabilities.

725 An example of conflicting guidance would be two guidance instructions which
imply different outcomes when the same input is supplied.

726 An example of misleading guidance would be the description of a single guidance
instruction which could be parsed in more than one way, one of which may result
in an insecure state.

727 An example of completeness would be referencing assertions of dependencies on
external security measures e.g., such as external procedural, physical and personnel
controls.

AVA_MSU.2 Misuse analysis - independent verification

Objectives

728 The objective is to ensure that conflicting guidance in the guidance documentation
have been addressed.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 188 of 232 Version 1.00 96/01/31

729 In this component, the objective is to provide additional assurance by performing
an independent analysis.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.2.1D The developer shall document an analysis of the guidance documentation for
conflicting and incomplete guidance.

AVA_MSU.2.2D The developer shall ensure that the guidance documentation contains no misleading
or unreasonable guidance.

Content and presentation of evidence elements:

AVA_MSU.2.1C The analysis documentation shall provide a rationale that demonstrates that the
guidance is not conflicting and is complete.

Evaluator action elements:

AVA_MSU.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_MSU.2.2E The evaluator shall determine that there is no misleading or unreasonable guidance
in the guidance documentation.

AVA_MSU.2.3E The evaluator shall repeat any procedures in the guidance documentation to ensure
that they produce the documented results.

AVA_MSU.2.4E The evaluator shall perform independent testing to confirm that the TOE can be
configured and operated securely using only the guidance documentation.

AVA_SOF Strength of TOE security functions

Objectives

730 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
functions claim.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 189 of 232

Application notes

731 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

732 The strength of TOE security functions evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

733 The strength of a function is rated ‘basic’ if the analysis shows that the function
provides adequate protection against unintended or casual breach of TOE security
by attackers possessing a low attack potential.

734 The strength of a function is rated ‘medium’ if the analysis shows that the function
provides adequate protection against attackers possessing a moderate attack
potential.

735 The strength of a function is rated ‘high’ if the analysis shows that the function
provides adequate protection against attackers possessing a high attack potential.

736 The attack potential is derived from the attacker’s expertise, opportunities,
resources, and motivation.

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

Developer action elements:

AVA_SOF.1.1D The developer shall identify all TOE security mechanisms for which a strength of
TOE security function analysis is appropriate.

AVA_SOF.1.2D The developer shall perform a strength of TOE security function analysis for each
identified mechanism.

Content and presentation of evidence elements:

AVA_SOF.1.1C The strength of TOE security function analysis shall determine the impact of the
identified TOE security mechanisms on the ability of the TOE security functions to
counter the threats.

AVA_SOF.1.2C The strength of TOE security function analysis shall demonstrate that the identified
strength of the security functions is consistent with the security objectives of the
TOE.

AVA_SOF.1.3C Each strength claim shall be either basic, medium, or high.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 190 of 232 Version 1.00 96/01/31

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that all TOE security mechanisms requiring a strength
analysis have been identified.

AVA_SOF.1.3E The evaluator shall confirm that the strength claims are correct.

AVA_VLA Vulnerability analysis

Objectives

737 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or e.g., by flaw hypotheses, could allow malicious users to violate the TSP.

738 Vulnerability analysis deals with the threats that a malicious user will be able to
discover flaws that will allow access to resources (e.g., data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

Application notes

739 The vulnerability analysis should consider the contents of all the TOE deliverables
for the targeted evaluation assurance level.

740 Obvious vulnerabilities are those that allow common attacks or those that might be
suggested by the TOE interface description. Obvious vulnerabilities are those in the
public domain, details of which should be known to a developer or available from
an evaluation oversight body.

741 The evidence identifies all the TOE documentation upon which the search for flaws
was based.

AVA_VLA.4 Highly resistant

Objectives

742 A vulnerability analysis is performed by the developer to ascertain the presence of
“obvious” security vulnerabilities.

743 The objective is to confirm that no identified security vulnerabilities can be
exploited in the intended environment for the TOE.

744 An independent vulnerability analysis is performed by the evaluator, which goes
beyond the “obvious” security vulnerabilities. The analysis considers the
deliverables available for the targeted evaluation assurance level.

CCEB-96/013_D EAL 6 - Semiformally verified design and tested

96/01/31 Version 1.00 Page 191 of 232

745 In addition, the independent vulnerability analysis performed by the evaluator is
based on analytical techniques which are employed to discover vulnerabilities that
would require sophisticated attackers.

746 The TOE must be shown to be highly resistant to penetration attacks.

Application notes

747 Obvious vulnerabilities are those which are open to exploitation which requires a
minimum of understanding of the TOE, skill, technical sophistication, and
resources.

748 Independent vulnerability analysis is based on highly detailed technical
information. The attacker is assumed to be thoroughly familiar with the specific
implementation of the TOE. The attacker is presumed to have a high level of
technical sophistication.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.4.1D The developer shall perform and document an analysis of the TOE deliverables
searching for obvious ways in which a user can violate the TSP.

AVA_VLA.4.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.4.1C The evidence shall show, for each vulnerability, that the vulnerability cannot be
exploited in the intended environment for the TOE.

AVA_VLA.4.2C The documentation shall justify that the TOE, with the identified
vulnerabilities, is highly resistant to penetration attacks.

AVA_VLA.4.3C The analysis documentation shall provide a justification that the analysis
completely addresses the TOE deliverables.

Evaluator action elements:

AVA_VLA.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

EAL 6 - Semiformally verified design and tested CCEB-96/013_D

Page 192 of 232 Version 1.00 96/01/31

AVA_VLA.4.2E The evaluator shall conduct penetration testing, based on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

AVA_VLA.4.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.4.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of identified
vulnerabilities in the target environment.

AVA_VLA.4.5E The evaluator shall determine that the TOE is highly resistant to penetration
attacks.

232CCEB-96/013_D

96/01/31 Version 1.00 Page 193 of 232

EAL 7

Formally verified design and tested

ACM Configuration management

749 Configuration management (CM) is an aspect of establishing that the functional
requirements and specifications are realised in the implementation of the TOE. CM
meets these objectives by requiring discipline and control in the processes of
refinement and modification of the TOE. CM systems are put in place to ensure the
integrity of the configuration items that they control, by providing a method of
tracking these configuration items, and by ensuring that only authorised users are
capable of changing them.

ACM_AUT CM automation

Objectives

750 The objective of introducing automated CM tools is to increase the efficiency of the
CM system, by simultaneously increasing the reliability of the CM system and
reducing the cost of operating it. While both automated and manual CM systems
can be bypassed, ignored, or insufficient to prevent unauthorised modification,
automated systems are less susceptible to human error or negligence. In addition,
while a manual CM system can accomplish all of the same things that an automated
system can, manual systems are typically more costly to operate on an ongoing
basis.

Application notes

751 For ACM_AUT.1 and ACM_AUT.2, there is a requirement that the automated CM
system control changes to the implementation representation of the TOE. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

ACM_AUT.2 Complete CM automation

Objectives

752 In development environments where the configuration items are complex or are
being developed by multiple developers, it is difficult to control changes without
the support of automated tools. In particular, these automated tools need to be able
to support the numerous changes that occur during development and ensure that
those changes are performed by authorised developers before their application. It is

7 - Formally verified design and tested CCEB-96/013_D

Page 194 of 232 Version 1.00 96/01/31

the objective of this component to ensure that all configuration items are controlled
through automated means.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_AUT.2.1D The developer shall provide a CM plan.

Content and presentation of evidence elements:

ACM_AUT.2.1C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.2.2C The CM plan shall describe how the automated tools are used in the CM system.

ACM_AUT.2.3C The CM system shall provide an automated means to ensure that only authorised
changes are made to the TOE implementation representation, and to all other
configuration items.

ACM_AUT.2.4C The CM system shall provide an automated means to support the generation of any
supported TSF from its implementation representation.

ACM_AUT.2.5C The CM system shall provide an automated means to support the comparison of any
two supported TSF versions, to ascertain the changes.

ACM_AUT.2.6C The CM system shall provide an automated means to identify all other
configuration items that are affected by the modification of a given configuration
item.

Evaluator action elements:

ACM_AUT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_CAP CM capabilities

Objectives

753 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TSF from the early design stages through all
subsequent maintenance efforts.

754 The objectives of this family include the following:

a) ensuring that the TSF is correct and complete before it is sent to the
consumer;

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 195 of 232

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items; and

d) enabling recovery to an earlier version of the TOE, in the event that an error
occurs through modification, addition, or deletion of TOE configuration
items.

Application notes

755 For ACM_CAP.1 and the higher components, there is a requirement that a
configuration list be provided. The configuration list contains all configuration
items which are maintained by the CM system.

756 For ACM_CAP.2 and the higher components, there is a requirement that the CM
documentation include evidence that the CM system is working properly. An
example of such evidence might be audit trail output from the CM system. The
evaluator is responsible for examining such evidence, to determine that it is
sufficient to demonstrate proper functionality of the CM system.

757 For ACM_CAP.2 and the higher components, there is a requirement that evidence
be provided that all configuration items are being maintained under the CM system.
Since a configuration item refers to an item which is on the configuration list, this
requirement states that all items on the configuration list are maintained under the
CM system.

758 For ACM_CAP.3 and ACM_CAP.4, there is a requirement that the CM system
support the generation of all supported versions of the TOE. This provides the
ability to recover to a previous known version in the event that an error occurs
through modification, addition or deletion of TOE configuration items.

ACM_CAP.4 Advanced support

Objectives

759 Clear identification of the TOE is required to determine those items under
evaluation that are subject to the criteria requirements.

760 Assurance of TOE integrity may be gained by controlling the ability to modify the
TOE configuration items. Ensuring proper functionality and use of the CM system
also provides assurance that the CM system is correctly enforcing the integrity of
the TOE.

761 The ability to generate previous but still supported versions of the TOE is necessary
for the resolution of any new flaws discovered during operation.

762 The purpose of acceptance procedures is to confirm that any creation or
modification of TSF configuration items is authorised.

7 - Formally verified design and tested CCEB-96/013_D

Page 196 of 232 Version 1.00 96/01/31

763 Integration procedures ensure that the introduction of modifications into the TSF is
performed in a controlled and complete manner.

764 Requiring that the CM system be able to identify the master copy of the material
used to generate the TSF helps to ensure that the integrity of this material is
preserved by the appropriate technical, physical and procedural safeguards.

Dependencies:

ACM_SCP.1 Minimal CM coverage

ALC_DVS.2 Sufficiency of security measures

Developer action elements:

ACM_CAP.4.1D The developer shall use a CM system.

ACM_CAP.4.2D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.4.1C The CM documentation shall include a configuration list, a CM plan, an acceptance
plan, and integration procedures.

ACM_CAP.4.2C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.4.3C The CM documentation shall describe the method used to uniquely identify the
TOE configuration items.

ACM_CAP.4.4C The CM plan shall describe how the CM system is used.

ACM_CAP.4.5C The CM documentation shall provide evidence that the CM system is working
properly.

ACM_CAP.4.6C The CM documentation shall provide evidence that all configuration items have
been and are being effectively maintained under the CM system.

ACM_CAP.4.7C The CM system shall ensure that only authorised changes are made to the TOE
configuration items.

ACM_CAP.4.8C The CM system shall support the generation of all supported versions of the TOE.

ACM_CAP.4.9C The acceptance plan shall describe the procedures used to accept modified or newly
created TSF configuration items as part of the TOE.

ACM_CAP.4.10C The integration procedures shall describe how the CM system is applied in the TOE
manufacturing process.

ACM_CAP.4.11C The CM system shall require that the person responsible for accepting a
configuration item into CM is not the person who developed it.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 197 of 232

ACM_CAP.4.12C The CM system shall permit clear identification of the TSF.

ACM_CAP.4.13C The CM system shall support the audit of all modifications to the TSF, including as
a minimum the originator, date, and time in the audit trail.

ACM_CAP.4.14C The CM system shall be able to identify the master copy of all material used to
generate the TSF.

ACM_CAP.4.15C The evidence shall justify that the use of the CM system is sufficient to ensure that
only authorised changes are made to the TOE.

ACM_CAP.4.16C The evidence shall justify that the integration procedures ensure that the
introduction of modifications into the TSF is performed in a controlled and
complete manner.

ACM_CAP.4.17C The evidence shall justify that the CM system is sufficient to ensure that the person
responsible for accepting a configuration item into CM is not the person who
developed it.

ACM_CAP.4.18C The evidence shall justify that the acceptance procedures provide for an adequate
and appropriate review of changes to TSF configuration items.

Evaluator action elements:

ACM_CAP.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_SCP CM scope

Objectives

765 The objective is to ensure that all necessary TOE configuration items are tracked by
the CM system. This helps to ensure that the integrity of these configuration items
is protected through the capabilities of the CM system.

766 The objectives of this family include the following:

a) ensuring that the TOE implementation representation is tracked;

b) ensuring that all necessary documentation, including problem reports, are
tracked during development and operation;

c) ensuring that configuration options (e.g. compiler switches) are tracked; and

d) ensuring that development tools are tracked.

7 - Formally verified design and tested CCEB-96/013_D

Page 198 of 232 Version 1.00 96/01/31

Application notes

767 For ACM_SCP.1 and the higher components, there is a requirement that the TOE
implementation representation be tracked by the CM system. The TOE
implementation representation refers to all hardware, software, and firmware that
comprise the physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code, but in other TOEs the
implementation representation may refer to a combination of software, hardware,
and firmware.

768 For ACM_SCP.2 and ACM_SCP.3, there is a requirement that security flaws be
tracked by the CM system. This requires that information regarding previous
security flaws and their resolution be maintained, as well as details regarding
current security flaws.

769 For ACM_SCP.3, there is a requirement that development tools and other related
information be tracked by the CM system. Examples of development tools are
programming languages and compilers. Information pertaining to TOE generation
items (such as compiler options, installation/generation options, and build options)
is an example of information relating to development tools.

ACM_SCP.3 Development tools CM coverage

Objectives

770 A CM system can control changes only to those items that have been placed under
CM. At a minimum, the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation should be placed under CM.

771 The ability to track security flaws under CM ensures that security flaw reports are
not lost or forgotten, and allows a developer to track security flaws to their
resolution.

772 Development tools play an important role in ensuring the production of a quality
version of the TSF. Therefore, it is important to control modifications to these tools.

Dependencies:

ACM_CAP.2 Authorisation controls

Developer action elements:

ACM_SCP.3.1D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_SCP.3.1C As a minimum, the following shall be tracked by the CM system: the TOE
implementation representation, design documentation, test documentation, user
documentation, administrator documentation, CM documentation, security flaws,
and development tools and related information.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 199 of 232

ACM_SCP.3.2C The CM documentation shall describe how configuration items are tracked by the
CM system.

Evaluator action elements:

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADO Delivery and operation

773 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

ADO_IGS Installation, generation, and start-up

Objectives

774 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started in a secure manner as intended by
the developer.

Application notes

775 The generation requirements are applicable only to TOEs that provide the ability to
generate an operational TOE from source or object code.

776 The installation, generation, and start-up procedures may exist as a separate
document, but would typically be grouped with other administrative guidance.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures to be used for the secure installation,
generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

7 - Formally verified design and tested CCEB-96/013_D

Page 200 of 232 Version 1.00 96/01/31

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV Development

777 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation. The development class also includes a family of requirements for
a correspondence mapping between the various TSF representations, ultimately
requiring a demonstration of correspondence from the least abstract representation
through all intervening representations to the TOE summary specification provided
in the ST. The other family in the development class describes requirements for the
internal structure of the TSF.

778 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different
families, however, since some of the representations are not necessary for low
assurance evaluations.

ADV_FSP Functional specification

Objectives

779 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is a refinement of the statement of IT functional
requirements in the ST of the TOE. The functional specification has to show that all
the functional requirements defined in the ST are addressed, and that the TSP is
enforced by the TSF.

Application notes

780 In addition to the content indicated in the following requirements, the functional
specification shall also include any additional specific detail specified by the
documentation notes in the related functional components.

781 The developer must provide evidence that the TSF is completely represented by the
functional specification. While a functional specification for the entire TOE would
allow an evaluator to determine the TSF boundary, it is not necessary to require that
specification when other evidence could be provided to demonstrate the TSF
boundary.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 201 of 232

782 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the functional specification. In the
course of the functional specification evaluation there are essentially three types of
evaluator determination: specific functional requirements are met and no further
work (e.g., with a less abstract representation of the TSF) is necessary; specific
functional requirements are violated and the TOE fails to meet its requirements; and
specific functional requirements have not been addressed and further analysis (of
another TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

783 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

784 While a TSP may represent any policies, TSP models have traditionally represented
only subsets of those policies. As a result, the TSP model cannot be treated like
every other TSF representation inasmuch as the correspondence between the TSP
model to the adjacent abstractions (i.e., TSP and functional specification) may not
be complete. As a result, there must be a demonstration of correspondence from the
functional specification to the TSP directly, rather than through the intervening
representation (i.e., TSP model) where correspondence may be lost. For these
reasons, all of the requirements for correspondence between the TSP, TSP model,
and functional specification have been included in this family and the
correspondence requirements in the Representation correspondence (ADV_RCR)
family do not apply to the TSP and TSP model.

785 Beginning with ADV_FSP.1, requirements are defined to ensure that the functional
specification is consistent with the TSP. Beginning with ADV_FSP.2, because
there is no requirement for a TSP model in ADV_FSP.1, requirements are defined
to describe the rules and characteristics of applicable policies of the TSP in the TSP
model and to ensure that the TSP model satisfies the corresponding policies of the
TSP. The “rules” and “characteristics” of a TSP model are intended to allow
flexibility in the type of model that may be developed (e.g., state transition, non-
interference). For example, rules may be represented as “properties” (e.g., simple
security property) and characteristics may be represented as definitions such as
“initial state”, “secure state”, “subjects”, and “objects”.

786 Since not all policies can be modeled, given the current state of the art, the
requirement indicating which policies shall be modeled is subjective. The PP/ST
author should identify specific functions and associated policies that are required to
be modeled. At the very least, access control policies are expected to be modeled
since they are currently within the state of the art.

7 - Formally verified design and tested CCEB-96/013_D

Page 202 of 232 Version 1.00 96/01/31

ADV_FSP.6 Formal specification of the TSF properties

Application notes

787 The requirement for both an informal and formal functional specification is
necessary to allow an evaluator to effectively comprehend and evaluate the more
formal representation using the informal representation for support.

Dependencies:

 ASE_TSS.1 Security Target, TOE Summary Specification, Evaluation
Requirements

 ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.6.1D The developer shall provide a functional specification.

ADV_FSP.6.2D The developer shall provide a TSP.

ADV_FSP.6.3D The developer shall provide a formal TSP model.

ADV_FSP.6.4D The developer shall provide a proof of correspondence between the formal
TSP model and the functional specification.

Content and presentation of evidence elements:

ADV_FSP.6.1C The functional specification shall describe the TSF using both an informal and
formal style.

ADV_FSP.6.2C The functional specification shall include both an informal and formal
presentation of syntax, effects, exceptions, error messages, and semantics of all
external TSF interfaces.

ADV_FSP.6.3C The functional specification shall include evidence that demonstrates that the TSF
is completely represented.

ADV_FSP.6.4C The proof of correspondence between the formal TSP model and the
functional specification shall demonstrate that the functional specification
satisfies the formal TSP model.

ADV_FSP.6.5C The proof of correspondence between the formal TSP model and the
functional specification shall demonstrate that there are no security functions
in the functional specification that conflict with the formal TSP model.

ADV_FSP.6.6C The formal TSP model shall describe the rules and characteristics of all policies of
the TSP that can be modeled.

ADV_FSP.6.7C The formal TSP model shall include a rationale that demonstrates that policies of
the TSP that are modeled are satisfied by the formal TSP model.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 203 of 232

ADV_FSP.6.8C The formal TSP model shall justify that all policies of the TSP that can be modeled
are represented in the formal TSP model.

ADV_FSP.6.9C The evidence shall justify that the informal and formal functional
specifications are consistent.

Evaluator action elements:

ADV_FSP.6.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.6.2E The evaluator shall determine that the functional specification is consistent with the
TSP.

ADV_FSP.6.3E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_HLD High-level design

Objectives

788 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e., subsystems) and relates these units to the functions that they
contain. The high-level design provides assurance that the TOE provides an
architecture appropriate to implement the claimed functional requirements.

789 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function and
identifies the security functions enforced by the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Application notes

790 In addition to the content indicated in the following requirements, the high-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

791 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using
“layers”, “domains”, or “servers”.

792 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the high-level design. In the course of
the high-level design evaluation there are essentially three types of evaluator

7 - Formally verified design and tested CCEB-96/013_D

Page 204 of 232 Version 1.00 96/01/31

determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

793 In all cases, it is important that the evaluator evaluate the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

794 The term “security functionality” is used to represent operations that a subsystem
performs that have some effect on the security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

795 The term “TSP enforcing subsystems” refers to a subsystem that contributes to the
enforcement of the TSP.

ADV_HLD.5 Formal high-level design

Dependencies:

 ADV_FSP.4 Formal security policy model

 ADV_RCR.3 Formal correspondence demonstration

Developer action elements:

ADV_HLD.5.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.5.1C The presentation of the high-level design shall be formal.

ADV_HLD.5.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.5.3C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.5.4C The high-level design shall identify the interfaces of the subsystems of the TSF.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 205 of 232

ADV_HLD.5.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.5.6C The high-level design shall describe the separation of the TSF into TSP enforcing
and other subsystems.

ADV_HLD.5.7C The evidence shall justify that the identified means of achieving separation,
including any protection mechanisms, are sufficient to ensure a clear and effective
separation of TSP enforcing from non-TSP enforcing functions.

ADV_HLD.5.8C The evidence shall justify that the TSF mechanisms are sufficient to implement the
security functions.

Evaluator action elements:

ADV_HLD.5.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.5.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_IMP Implementation representation

Objectives

796 The description of the implementation in the form of source code, firmware,
hardware drawings, etc. captures the detailed internal workings of the TSF in
support of analysis.

Application notes

797 The implementation representation is used to express the notion of the least abstract
representation of the TSF, specifically the one that is used to create the TSF itself
without further design refinement. Source code which is then compiled or a
hardware drawing which is used to build the actual hardware are examples of parts
of an implementation representation.

798 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the implementation. In the course of
the implementation evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a more abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis is necessary.
However, since the implementation is the least abstract representation it is likely
that further analysis cannot be performed, unless the TSF representations have not
been evaluated in a usual order (i.e., most abstract to least abstract). If requirements

7 - Formally verified design and tested CCEB-96/013_D

Page 206 of 232 Version 1.00 96/01/31

are not addressed after the analysis of all TSF representations, this represents a
failure of the TOE evaluation. Note that this more comprehensive failure
determination requirement is realised in the Representation correspondence
(ADV_RCR) family.

799 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

800 It is expected that evaluators will use the implementation to directly support other
evaluation activities (e.g., vulnerability analysis, test coverage analysis). It is
expected that PP/ST authors will select a component that requires that the
implementation is complete and comprehensible enough to address the needs of all
other requirements included in the PP/ST.

ADV_IMP.3 Structured implementation of the TSF

Dependencies:

 ADV_INT.1 Modularity

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.3 Compliance with implementation standards - all parts

Developer action elements:

ADV_IMP.3.1D The developer shall provide the implementation representations for the entire TSF.

Content and presentation of evidence elements:

ADV_IMP.3.1C The implementation representations shall unambiguously define the TSF to a level
of detail such that the TSF can be generated without further design decisions.

ADV_IMP.3.2C The implementation representations shall describe the relationships between all
portions of the implementation.

ADV_IMP.3.3C The implementation representations shall be structured into small and
comprehensible sections.

Evaluator action elements:

ADV_IMP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_IMP.3.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 207 of 232

ADV_INT TSF internals

Objectives

801 This family of components deals with the internal structure of the TSF.
Requirements are established for modularity, the layering of the software
architecture to separate levels of abstraction and minimisation of circular
dependencies, and the minimisation from the TSF of software that is not TSP
enforcing.

802 Modular design reduces the interdependence between elements of the TSF and thus
reduces the risk that a change or error in one module will have effects throughout
the TOE. Thus, a modular design provides the basis for determining the scope of
interaction with other elements of the TSF, provides for increased assurance that
unexpected effects do not occur, and also provides the basis for designing and
evaluating test suites.

803 Design complexity affects how difficult it is to understand the design of the TOE.
The simpler the design, the more assurance is gained that there are no hidden
vulnerabilities in the design and that the high-level protection requirements are
accurately and completely instantiated in the lower level design and the
implementation.

804 Design complexity minimisation provides a part of the assurance that the code is
understood; the less complex the code in the TSF, the greater the likelihood that the
design of the TSF is comprehensible. Design complexity minimisation is a key
characteristic of a reference validation mechanism.

Application notes

805 The term “relevant representation” is used in these components to cover the need
for an evaluator to check for the appropriate issue (e.g., modularity, complexity) at
whichever level of representation (e.g., high-level design, implementation) the
requirements are being invoked.

806 The term “portions of the TSF” is used to represent parts of the TSF with a varying
granularity based on the available TSF representations. The functional specification
allows identification in terms of interfaces, the high-level design allows
identification in terms of subsystems, the low-level design allows identification in
terms of modules, and the implementation representation allows identification in
terms of implementation units (e.g., source code files).

ADV_INT.3 Minimisation of Complexity

Application notes

807 This component requires that the reference monitor property “small enough to be
analysed” is fully addressed. When this component is combined with the functional
requirements FPT_RVM.1 and FPT_SEP.3, the reference monitor concept would
be fully realised.

7 - Formally verified design and tested CCEB-96/013_D

Page 208 of 232 Version 1.00 96/01/31

Dependencies:

 ADV_IMP.2 Implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

Developer action elements:

ADV_INT.3.1D The developer shall design and structure the TSF in a modular and layered
fashion that avoids unnecessary interactions between the modules of the
design, minimises mutual interactions between the layers of the design, and
minimises the complexity of the entire TSF.

ADV_INT.3.2D The developer shall provide an architectural description.

ADV_INT.3.3D The developer shall design and structure the portions of the TSF that enforce
any access control and information flow policies such that they are small
enough to be analysed.

ADV_INT.3.4D The developer shall ensure that functions that are not relevant to TSP
enforcement are excluded from the TSF.

Content and presentation of evidence elements:

ADV_INT.3.1C The architectural description shall identify the modules of the TSF and the portions
of the TSF that enforce any access control and information flow policies.

ADV_INT.3.2C The architectural description shall describe the purpose, interface, parameters, and
side-effects of each module of the TSF.

ADV_INT.3.3C The architectural description shall describe how the TSF design provides for largely
independent modules that avoid unnecessary interactions.

ADV_INT.3.4C The architectural description shall describe the layering architecture.

ADV_INT.3.5C The architectural description shall show that mutual interactions have been
eliminated or minimised, and justify those that remain.

ADV_INT.3.6C The architectural description shall describe how the entire TSF has been
structured to minimise complexity.

ADV_INT.3.7C The architectural description shall justify the inclusion of any non TSP
enforcing modules in the TSF.

Evaluator action elements:

ADV_INT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_INT.3.2E The evaluator shall check the relevant representations for compliance with the
architectural description.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 209 of 232

ADV_INT.3.3E The evaluator shall confirm that the portions of the TSF that enforce any
access control and information flow policies are small enough to be analysed.

ADV_LLD Low-level design

Objectives

808 The low-level design of a TOE provides a description of the internal workings of
the TSF in terms of modules and their interrelationships and dependencies. The
low-level design provides assurance that the TSF subsystems have been correctly
and effectively refined.

809 For each module of the TSF, the low-level design describes its purpose, function,
interfaces, dependencies, and the implementation of any TSP enforcing functions.

Application notes

810 In addition to the content indicated in the following requirements, the low-level
design shall also include any additional specific detail specified by the
documentation notes in the related functional components.

811 The evaluator of the TOE is expected to make determinations regarding the
functional requirements in the ST relevant to the low-level design. In the course of
the low-level design evaluation there are essentially three types of evaluator
determination: specific functional requirements are met and no further work (e.g.,
with a less abstract representation of the TSF) is necessary; specific functional
requirements are violated and the TOE fails to meet its requirements; and specific
functional requirements have not been addressed and further analysis (of another
TSF representation) is necessary. Whenever more analysis is necessary, the
evaluator is expected to carry that information forward to the analysis of other TSF
representations. If requirements are not addressed after the analysis of the last
provided TSF representation, this also represents a failure of the TOE evaluation.
Note that this more comprehensive failure determination requirement is realised in
the Representation correspondence (ADV_RCR) family.

812 In all cases, it is important that the evaluator evaluates the TSF as a unit since in
many cases the security functions must cooperate to meet specific functional
requirements and also each security function must not interfere with the operation
of any other security function.

813 The term “TSP enforcing function” refers to any function that contributes to TSP
enforcement. The term “TSP enforcing modules” similarly refers to any module
that contributes to TSP enforcement.

ADV_LLD.2 Semiformal low-level design

Dependencies:

 ADV_HLD.3 Semiformal high-level design

7 - Formally verified design and tested CCEB-96/013_D

Page 210 of 232 Version 1.00 96/01/31

 ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements:

ADV_LLD.2.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.2.1C The presentation of the low-level design shall be semiformal.

ADV_LLD.2.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.2.3C The low-level design shall describe the purpose of each module.

ADV_LLD.2.4C The low-level design shall define the interrelationships between the modules in
terms of provided functionality and dependencies on other modules.

ADV_LLD.2.5C The low-level design shall describe the implementation of all TSP enforcing
functions.

ADV_LLD.2.6C The low-level design shall describe the interfaces of each module in terms of their
syntax and semantics.

ADV_LLD.2.7C The low-level design shall provide a demonstration that the TSF is completely
represented.

ADV_LLD.2.8C The low-level design shall identify the interfaces of the modules of the TSF visible
at the external interface of the TSF.

ADV_LLD.2.9C The low-level design shall describe the separation of the TSF into TSP enforcing
and other modules.

Evaluator action elements:

ADV_LLD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_LLD.2.2E The evaluator shall determine if the functional requirements in the ST are addressed
by the representation of the TSF.

ADV_RCR Representation correspondence

Objectives

814 The correspondence between the various representations (i.e. functional
requirements expressed in the ST, functional specification, high-level design, low-
level design, implementation) addresses the correct and complete instantiation of
the requirements to the least abstract representation provided. This conclusion is

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 211 of 232

achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

Application notes

815 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, representation of the TSF is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

816 The evaluator must analyse each demonstration of correspondence between
abstractions, as well as the results of the analysis of each TSF representation, and
then make a determination as to whether the functional requirements in the ST have
been satisfied.

817 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 5.4, it is intended to address
correspondence between the requirements in the ST as well as the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation.

ADV_RCR.3 Formal correspondence demonstration

Application notes

818 The developer must either demonstrate or prove correspondence, as described in the
requirements below, commensurate with the level of rigour of presentation style.
For example, correspondence must be proven when corresponding representations
are formally specified.

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.3.1D The developer shall provide evidence that the least abstract TSF representation
provided is an accurate, consistent, and complete instantiation of the functional
requirements expressed in the ST.

ADV_RCR.3.2D For those corresponding portions of representations that are formally
specified, the developer shall prove that correspondence.

Content and presentation of evidence elements:

ADV_RCR.3.1C For each adjacent pair of TSF representations, the evidence shall prove or
demonstrate that all parts of the more abstract representation are refined in
the less abstract representation.

7 - Formally verified design and tested CCEB-96/013_D

Page 212 of 232 Version 1.00 96/01/31

ADV_RCR.3.2C For each adjacent pair of TSF representations, where portions of one
representation are semiformally specified and the other at least semi-formally
specified, the demonstration of correspondence between those portions of the
representations shall be semiformal.

ADV_RCR.3.3C For each adjacent pair of TSF representations, where portions of either
representation are informally specified the demonstration of correspondence
between those portions of the representations may be informal.

ADV_RCR.3.4C For each adjacent pair of TSF representations, where portions of both
representations are formally specified the proof of correspondence between
those portions of the representations shall be formal.

Evaluator action elements:

ADV_RCR.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.3.2E The evaluator shall analyse the correspondence between the functional
requirements expressed in the ST and the least abstract representation provided to
ensure accuracy, consistency, and completeness.

ADV_RCR.3.3E The evaluator shall determine the accuracy of the proofs of correspondence by
selectively verifying the formal analysis.

AGD Guidance documents

819 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure installation and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

AGD_ADM Administrator guidance

Objectives

820 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 213 of 232

Application notes

821 The requirements AGD_ADM.1.2C and AGD_ADM.1.11C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

822 The PP/ST author should review the functional components of the PP/ST for
guidance on administrator documentation. Those application notes that are relevant
to administrator guidance for understanding and proper application of the security
functions should be considered for inclusion in the administrator guidance
requirements. An example of an administrator guidance document is a reference
manual.

AGD_ADM.1 Administrator guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe how to administer the TOE in a secure
manner.

AGD_ADM.1.2C The administrator guidance shall contain warnings about functions and privileges
that should be controlled in a secure processing environment.

AGD_ADM.1.3C The administrator guidance shall contain guidelines on the consistent and effective
use of the security functions within the TSF.

AGD_ADM.1.4C The administrator guidance shall describe the difference between two types of
functions: those which allow an administrator to control security parameters, and
those which allow the administrator to obtain information only.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
administrator’s control.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall contain guidelines on how the security functions
interact.

7 - Formally verified design and tested CCEB-96/013_D

Page 214 of 232 Version 1.00 96/01/31

AGD_ADM.1.8C The administrator guidance shall contain instructions regarding how to configure
the TOE.

AGD_ADM.1.9C The administrator guidance shall describe all configuration options that may be
used during secure installation of the TOE.

AGD_ADM.1.10C The administrator guidance shall describe details, sufficient for use, of procedures
relevant to the administration of security.

AGD_ADM.1.11C The administrator guidance shall be consistent with all other documents supplied
for evaluation.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AGD_ADM.1.2E The evaluator shall confirm that the installation procedures result in a secure
configuration.

AGD_USR User guidance

Objectives

823 User guidance refers to written material that is intended to be used by
nonadministrative (human) users of the TOE. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines, including
warnings, for its secure use.

824 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users and application providers will
understand the secure operation of the TOE and will use it as intended.

Application notes

825 The requirement AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect that
any warnings to the users of a TOE with regard to the TOE security environment
and the security objectives described in the PP/ST are appropriately covered in the
user guidance.

826 The PP/ST author should review the functional components of the PP/ST for
guidance on user documentation. Those application notes that are relevant to user
guidance aimed at the understanding and proper use of the security functions should
be considered for inclusion in the user guidance requirements. Examples of user
guidance are reference manuals, user guides, and on-line help.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 215 of 232

AGD_USR.1 User guidance

Dependencies:

 ADV_FSP.1 TOE and security policy

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the TSF and interfaces available to the user.

AGD_USR.1.2C The user guidance shall contain guidelines on the use of security functions provided
by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about functions and privileges that should
be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe the interaction between user-visible security
functions.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation delivered for
evaluation.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC Life cycle support

827 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during development and maintenance.
Confidence in the correspondence between the TOE security requirements and the
TOE is greater if security analysis and the production of the evidence are done on
a regular basis as an integral part of the development and maintenance activities.

ALC_DVS Development security

Objectives

828 Development security is concerned with physical, procedural, personnel, and other
security measures that may be used in the development environment to protect the
TOE. It includes the physical security of the development location and any
procedures used to select development staff.

7 - Formally verified design and tested CCEB-96/013_D

Page 216 of 232 Version 1.00 96/01/31

Application notes

829 The evaluator should decide whether there is a need for visiting the user’s site in
order to confirm that the requirements of this family are met.

ALC_DVS.2 Sufficiency of security measures

Dependencies:

No dependencies.

Developer action elements:

ALC_DVS.2.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.2.1C The development security documentation shall describe the physical, procedural,
personnel, and other security measures that are used to protect the confidentiality
and integrity of the TOE during its development.

ALC_DVS.2.2C The development security documentation shall provide evidence that these security
measures are followed during the development and maintenance of the TOE.

ALC_DVS.2.3C The evidence shall justify that the security measures are sufficient to protect the
confidentiality and integrity of the TOE.

Evaluator action elements:

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_DVS.2.2E The evaluator shall check whether the security measures are being applied.

ALC_LCD Life cycle definition

Objectives

830 Poorly controlled development and maintenance can result in a flawed
implementation of a TOE (or a TOE that does not meet all of its security
requirements). This, in turn, results in security violations. Therefore, it is important
that a model for the development and maintenance of a TOE be established as early
as possible in the TOE’s life-cycle.

831 Using a model for the development and maintenance of a TOE does not guarantee
that the TOE will be free of flaws, nor does it guarantee that the TOE will meet all
of its security functional requirements. It is possible that the model chosen was
insufficient or inadequate and therefore no benefits in the quality of the TOE could
be observed. Using a life-cycle model that has been approved by some group of

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 217 of 232

experts (e.g., academic experts, standards bodies) improves the chances that the
development and maintenance models will contribute to the overall quality of the
TOE.

Application notes

832 Although life-cycle definition deals with the maintenance of the TOE and hence
with aspects becoming relevant after the completion of the evaluation, its
evaluation adds assurance through an analysis the life-cycle information for the
TOE provided at the time of the evaluation.

833 A life-cycle model encompasses the procedures, tools and techniques used to
develop and maintain the TOE.

834 A standardised life-cycle model is a model that has been approved by some group
of experts (e.g., academic experts, standards bodies).

835 A measurable life-cycle model is a model with some arithmetic parameters so that
e.g. the coding standards can be measured.

ALC_LCD.3 Measurable life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.3.1D The developer shall establish a life-cycle model to be used in the development and
maintenance of the TOE.

ALC_LCD.3.2D The developer shall produce life-cycle definition documentation.

ALC_LCD.3.3D The developer shall use a standardised and measurable life-cycle model to
develop and maintain the TOE.

Content and presentation of evidence elements:

ALC_LCD.3.1C The life-cycle definition documentation shall describe the model used to develop
and maintain the TOE.

ALC_LCD.3.2C The life-cycle definition documentation shall explain why the model was chosen
and how it is used to develop and maintain the TOE.

ALC_LCD.3.3C The life-cycle definition documentation shall demonstrate compliance with the
standardised and measurable life-cycle model.

7 - Formally verified design and tested CCEB-96/013_D

Page 218 of 232 Version 1.00 96/01/31

Evaluator action elements:

ALC_LCD.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT Tools and techniques

Objectives

836 Tools and techniques is an aspect of selecting tools which are used to develop,
analyse and implement the TOE. It includes requirements to prevent ill-defined,
inconsistent or incorrect development tools from being used to develop the TOE.
This includes, but is not limited to programming languages, documentation,
implementation standards, and other parts of the TOE like supporting runtime
libraries.

Application notes

837 There is a requirement for well-defined development tools. These are tools which
have been shown to be well understood and applicable without the need for
intensive further clarification. For example, programming languages and computer
aided design (CAD) systems that are based on an a standard published by standards
bodies are considered to be well-defined.

838 Tools and techniques distinguishes between the implementation standards applied
by the developer and the implementation standards for “all parts of the TOE” which
additionally includes third party software, hardware, or firmware.

839 The requirement in ALC_TAT.1.2C is specifically applicable to programming
languages so as to ensure that all statements in the source code have an
unambiguous meaning.

ALC_TAT.3 Compliance with implementation standards - all parts

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements:

ALC_TAT.3.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.3.2D The developer shall document the selected implementation dependent options of
the development tools.

ALC_TAT.3.3D The developer shall describe the implementation standards for all parts of the TOE.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 219 of 232

Content and presentation of evidence elements:

ALC_TAT.3.1C Any development tools used for implementation shall be well-defined.

ALC_TAT.3.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

Evaluator action elements:

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have been applied.

ATE Tests

840 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g., functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing establishes that the TSF
exhibits the properties necessary to satisfy the functional requirements of the PP/
ST. Testing provides assurance that the TSF satisfies at least the security functional
requirements, although it cannot establish that the TSF does no more than what was
specified. Testing may also be directed toward the internals of the TSF, such as the
testing of subsystems and modules against their specifications.

841 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

842 The independent testing has dependencies on the other families to provide the
necessary information to support the requirements, but is primarily concerned with
independent evaluator actions.

843 This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing
is addressed separately as an aspect of vulnerability assessment in the class AVA.

ATE_COV Coverage

Objectives

844 This family addresses those aspects of testing that deal with completeness of
testing. That is, it addresses the extent to which the TOE security functions are
tested, whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates as specified, and whether or not the order in which testing proceeds

7 - Formally verified design and tested CCEB-96/013_D

Page 220 of 232 Version 1.00 96/01/31

correctly accounts for functional dependencies between the portions of the TOE
being tested.

Application notes

845 The specific documentation required by the coverage components will be
determined, in most cases, by the documentation stipulated in the level of
ATE_FUN that is specified. However, the PP/ST author will need to give
consideration to the proper set of test evidence and documentation required.

ATE_COV.3 Ordered testing

Objectives

846 The objective is that testing completely address the security functions.

847 The objective is to ensure that there is a detailed correspondence between the tests
and the security functions.

848 In this component, an additional objective is detailed justification that testing is
structured such as to avoid circular arguments about the correctness of the portions
of the TOE being tested.

Application notes

849 Ordering dependencies between tests can be of different forms e.g., test A provides
a result to test B; test A cannot run before test B, since it breaks something required
by test B; test failure in test B might be because of a failure in “untested” test A.

Dependencies:

ADV_FSP.1 TOE and security policy

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

ATE_COV.3.2D The developer shall provide an analysis of ordering dependencies of tests.

Content and presentation of evidence elements:

ATE_COV.3.1C The analysis of the test coverage shall demonstrate that the tests identified in the
test documentation cover the TSF.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate the correspondence between the
security functions and the tests identified in the test documentation.

ATE_COV.3.3C The analysis documentation shall justify that the correspondence is complete.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 221 of 232

ATE_COV.3.4C The analysis documentation shall describe the ordering dependencies of tests.

ATE_COV.3.5C The analysis documentation shall justify that the test plans and procedures are
consistent with the ordering dependencies of tests.

Evaluator action elements:

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_DPT Depth

Objectives

850 The components in this family deal with the level of detail to which the TOE is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

851 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internals of the TOE, are more likely to discover any malicious
code that has been inserted.

Application notes

852 The specific amount and type of documentation and evidence will, in general, be
determined by that required by level of ATE_FUN selected. However, the PP/ST
author will need to give consideration to the proper set of test evidence and
documentation required.

ATE_DPT.4 Testing - implementation

Objectives

853 The functional specification of a TOE provides a high level description of the
external workings of the TSF. Testing at the level of the functional specification, in
order to demonstrate the presence of any flaws, provides assurance that the TSF
functional specification has been correctly realised.

854 The subsystems of a TOE provide a high level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

855 The modules of a TOE provide a description of the internal workings of the TSF.
Testing at the level of the modules, in order to demonstrate the presence of any
flaws, provides assurance that the TSF modules have been correctly realised.

7 - Formally verified design and tested CCEB-96/013_D

Page 222 of 232 Version 1.00 96/01/31

856 The implementation representation of a TOE provides a detailed description of the
internal workings of the TSF. Testing at the level of the implementation, in order to
demonstrate the presence of any flaws, provides assurance that the TSF
implementation has been correctly realised.

Application notes

857 The functional specification representation is used to express the notion of the most
abstract representation of the TSF.

858 The developer is expected to describe the testing of the high level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts. While the developer
is not required to actually have “subsystems”, the developer is expected to represent
a similar notion of decomposition.

859 The developer is expected to describe the testing of the low level design of the TSF
in terms of “modules”. The term “modules” is used to express the notion of
decomposing each of the “subsystems” of the TSF into a relatively small number of
parts. While the developer is not required to actually have “modules”, the developer
is expected to represent a similar notion of decomposition.

860 The implementation representation is used to express the notion of the least abstract
representation of the TSF, specifically the one which is used to generate the TSF
itself (e.g., source code which is then compiled).

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_IMP.2 Implementation of the TSF

ADV_LLD.1 Descriptive low-level design

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.4.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.4.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TOE operates in
accordance with the functional specification, high level design, low level
design, and implementation of the TSF.

Evaluator action elements:

ATE_DPT.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 223 of 232

ATE_FUN Functional tests

Objectives

861 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the functional requirements of its PP/ST. Functional testing provides
assurance that the TSF satisfies at least the security functional requirements,
although it cannot establish that the TSF does no more than what was specified. The
family “Functional tests” is focused on the type and amount of documentation or
support tools required, and what is to be demonstrated through testing.

862 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

Application notes

863 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results is
derived from the test inputs.

864 The developer shall eliminate all security relevant flaws discovered during testing.

865 The developer shall test the TSF to determine that no new security relevant flaws
have been introduced as a result of eliminating discovered security relevant flaws.

ATE_FUN.1 Functional testing

Objectives

866 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

Dependencies:

ATE_COV.1 Complete coverage - informal

ATE_DPT.1 Testing - functional specification

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions, and
test results.

7 - Formally verified design and tested CCEB-96/013_D

Page 224 of 232 Version 1.00 96/01/31

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the goal
of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and describe
the scenarios for testing each security function.

ATE_FUN.1.4C The test results in the test documentation shall show the expected results of each
test.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate that each
security function operates as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND Independent testing

Objectives

867 The objective is to demonstrate that the security functions perform as specified.

868 Additionally, an objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer which results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Application notes

869 The testing specified in this family can be performed by a party other than the
evaluator (e.g., an independent laboratory, an objective consumer organisation).

870 This family deals with the degree to which there is independent functional testing
of the TOE. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests.

ATE_IND.3 Independent testing - complete

Objectives

871 The objective is to demonstrate that all security functions perform as specified.

872 In this component, the objective is to repeat the developer testing.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 225 of 232

Application notes

873 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required to run tests. The need for
documentation is supported by the dependencies to other assurance families.

874 Additionally, suitability of the TOE for testing may be based on other
considerations e.g., the version of the TOE submitted by the developer is not the
final version.

875 The developer is required to perform testing and to provide test documentation and
test results. This is addressed by the ATE_FUN family.

Dependencies:

ADV_FSP.1 TOE and security policy

AGD_USR.1 User guidance

AGD_ADM.1 Administrator guidance

ATE_FUN.1 Functional testing

Developer action elements:

ATE_IND.3.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.3.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.3.2E The evaluator shall test the TSF to confirm that the TSF operates as specified.

ATE_IND.3.3E The evaluator shall execute all tests in the test documentation to verify the
developer test results.

AVA Vulnerability assessment

876 The class “Vulnerability assessment” encompasses four families: covert channel
analysis (AVA_CCA), misuse (AVA_MSU), strength of TOE security functions
(AVA_SOF) and vulnerability analysis (AVA_VLA). The class addresses the
existence of exploitable covert channels, the misuse or incorrect configuration of
the TOE, the ability for all critical security mechanisms to withstand direct attack
and the definition and assessment of penetration tests to exploit vulnerabilities
introduced in the development or the operation of the TOE.

7 - Formally verified design and tested CCEB-96/013_D

Page 226 of 232 Version 1.00 96/01/31

AVA_CCA Covert channel analysis

Objectives

877 Covert channel analysis is carried out to determine the existence and potential
capacity of unintended signalling channels that may be exploited by malicious
code.

878 The assurance requirements address the threat that unintended and exploitable
signalling paths exist which may be exercised to violate the security policy.

Application notes

879 Channel capacity estimations are based upon informal engineering measurements,
as well as actual test measurements.

880 Details of the assumptions upon which the covert channel analysis is based shall be
given, e.g., processor speed, configuration, memory, and cache size.

881 Test parameters details are (e.g., processor speed, memory and cache size), relevant
configuration parameters, how the channel was exercised, used to obtain the
capacity during testing.

882 The selective validation of the covert channel analysis through testing allows the
evaluator the opportunity to verify any aspect of the covert channel analysis (e.g.,
identification, capacity estimation, elimination, monitoring, and exploitation
scenarios). This does not impose a requirement to demonstrate the entire set of
covert channel analysis results.

883 If there are no information flow control policies in the ST, this family of assurance
requirements is no longer applicable since this family only applies to information
flow control policies. Even if there are no specific functional requirements (e.g.,
FDP_IFF.1 to FDP_IFF.3) for eliminating, limiting, or monitoring covert channels,
this family still requires the identification of covert channels.

AVA_CCA.2 Systematic covert channel analysis

Objectives

884 The objective is to identify covert channels which are identifiable through analysis.

885 In this component, the objective is to perform a systematic search for covert
channels.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_IMP.2 Implementation of the TSF

AGD_ADM.1 Administrator guidance

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 227 of 232

AGD_USR.1 User guidance

Developer action elements:

AVA_CCA.2.1D The developer shall conduct a search for covert channels for each information flow
control policy.

AVA_CCA.2.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements:

AVA_CCA.2.1C The analysis documentation shall identify covert channels.

AVA_CCA.2.2C The analysis documentation shall describe the procedures used for determining the
existence of covert channels, and the information needed to carry out the covert
channel analysis.

AVA_CCA.2.3C The analysis documentation shall describe all assumptions made during the covert
channel analysis.

AVA_CCA.2.4C The analysis documentation shall describe the method used for estimating channel
capacity, which shall be based on worst case scenarios.

AVA_CCA.2.5C The analysis documentation shall describe the worst case exploitation scenario for
each identified covert channel.

AVA_CCA.2.6C The analysis documentation shall provide evidence that the method used to identify
covert channels is systematic.

Evaluator action elements:

AVA_CCA.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_CCA.2.2E The evaluator shall confirm that the results of the covert channels analysis meet the
functional requirements.

AVA_CCA.2.3E The evaluator shall selectively validate the covert channel analysis through testing.

AVA_MSU Misuse

Objectives

886 Misuse investigates whether the TOE can be configured or used in a manner which
is insecure but which an administrator or end-user of the TOE would reasonably
believe to be secure.

887 The objective is to minimise the risk of human or other errors in operation which
may deactivate, disable, or fail to activate security functions.

7 - Formally verified design and tested CCEB-96/013_D

Page 228 of 232 Version 1.00 96/01/31

888 The objective is to minimise the probability of configuring or installing the TOE in
a way which is insecure, without the end user or administrator being able to
recognise it.

Application notes

889 Conflicting, misleading or incomplete guidance may result in a user of the TOE
believing that the TOE is secure, when it is not. Conflicting guidance can result in
vulnerabilities.

890 An example of conflicting guidance would be two guidance instructions which
imply different outcomes when the same input is supplied.

891 An example of misleading guidance would be the description of a single guidance
instruction which could be parsed in more than one way, one of which may result
in an insecure state.

892 An example of completeness would be referencing assertions of dependencies on
external security measures e.g., such as external procedural, physical and personnel
controls.

AVA_MSU.2 Misuse analysis - independent verification

Objectives

893 The objective is to ensure that conflicting guidance in the guidance documentation
have been addressed.

894 In this component, the objective is to provide additional assurance by performing
an independent analysis.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.2.1D The developer shall document an analysis of the guidance documentation for
conflicting and incomplete guidance.

AVA_MSU.2.2D The developer shall ensure that the guidance documentation contains no misleading
or unreasonable guidance.

Content and presentation of evidence elements:

AVA_MSU.2.1C The analysis documentation shall provide a rationale that demonstrates that the
guidance is not conflicting and is complete.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 229 of 232

Evaluator action elements:

AVA_MSU.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_MSU.2.2E The evaluator shall determine that there is no misleading or unreasonable guidance
in the guidance documentation.

AVA_MSU.2.3E The evaluator shall repeat any procedures in the guidance documentation to ensure
that they produce the documented results.

AVA_MSU.2.4E The evaluator shall perform independent testing to confirm that the TOE can be
configured and operated securely using only the guidance documentation.

AVA_SOF Strength of TOE security functions

Objectives

895 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
functions claim.

Application notes

896 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

897 The strength of TOE security functions evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

898 The strength of a function is rated ‘basic’ if the analysis shows that the function
provides adequate protection against unintended or casual breach of TOE security
by attackers possessing a low attack potential.

899 The strength of a function is rated ‘medium’ if the analysis shows that the function
provides adequate protection against attackers possessing a moderate attack
potential.

900 The strength of a function is rated ‘high’ if the analysis shows that the function
provides adequate protection against attackers possessing a high attack potential.

901 The attack potential is derived from the attacker’s expertise, opportunities,
resources, and motivation.

7 - Formally verified design and tested CCEB-96/013_D

Page 230 of 232 Version 1.00 96/01/31

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

Developer action elements:

AVA_SOF.1.1D The developer shall identify all TOE security mechanisms for which a strength of
TOE security function analysis is appropriate.

AVA_SOF.1.2D The developer shall perform a strength of TOE security function analysis for each
identified mechanism.

Content and presentation of evidence elements:

AVA_SOF.1.1C The strength of TOE security function analysis shall determine the impact of the
identified TOE security mechanisms on the ability of the TOE security functions to
counter the threats.

AVA_SOF.1.2C The strength of TOE security function analysis shall demonstrate that the identified
strength of the security functions is consistent with the security objectives of the
TOE.

AVA_SOF.1.3C Each strength claim shall be either basic, medium, or high.

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that all TOE security mechanisms requiring a strength
analysis have been identified.

AVA_SOF.1.3E The evaluator shall confirm that the strength claims are correct.

AVA_VLA Vulnerability analysis

Objectives

902 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or e.g., by flaw hypotheses, could allow malicious users to violate the TSP.

903 Vulnerability analysis deals with the threats that a malicious user will be able to
discover flaws that will allow access to resources (e.g., data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

CCEB-96/013_D 7 - Formally verified design and tested

96/01/31 Version 1.00 Page 231 of 232

Application notes

904 The vulnerability analysis should consider the contents of all the TOE deliverables
for the targeted evaluation assurance level.

905 Obvious vulnerabilities are those that allow common attacks or those that might be
suggested by the TOE interface description. Obvious vulnerabilities are those in the
public domain, details of which should be known to a developer or available from
an evaluation oversight body.

906 The evidence identifies all the TOE documentation upon which the search for flaws
was based.

AVA_VLA.4 Highly resistant

Objectives

907 A vulnerability analysis is performed by the developer to ascertain the presence of
“obvious” security vulnerabilities.

908 The objective is to confirm that no identified security vulnerabilities can be
exploited in the intended environment for the TOE.

909 An independent vulnerability analysis is performed by the evaluator, which goes
beyond the “obvious” security vulnerabilities. The analysis considers the
deliverables available for the targeted evaluation assurance level.

910 In addition, the independent vulnerability analysis performed by the evaluator is
based on analytical techniques which are employed to discover vulnerabilities that
would require sophisticated attackers.

911 The TOE must be shown to be highly resistant to penetration attacks.

Application notes

912 Obvious vulnerabilities are those which are open to exploitation which requires a
minimum of understanding of the TOE, skill, technical sophistication, and
resources.

913 Independent vulnerability analysis is based on highly detailed technical
information. The attacker is assumed to be thoroughly familiar with the specific
implementation of the TOE. The attacker is presumed to have a high level of
technical sophistication.

Dependencies:

ADV_FSP.1 TOE and security policy

ADV_HLD.1 Descriptive high-level design

ADV_IMP.1 Subset of the implementation of the TSF

7 - Formally verified design and tested CCEB-96/013_D

Page 232 of 232 Version 1.00 96/01/31

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.4.1D The developer shall perform and document an analysis of the TOE deliverables
searching for obvious ways in which a user can violate the TSP.

AVA_VLA.4.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.4.1C The evidence shall show, for each vulnerability, that the vulnerability cannot be
exploited in the intended environment for the TOE.

AVA_VLA.4.2C The documentation shall justify that the TOE, with the identified vulnerabilities, is
highly resistant to penetration attacks.

AVA_VLA.4.3C The analysis documentation shall provide a justification that the analysis
completely addresses the TOE deliverables.

Evaluator action elements:

AVA_VLA.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_VLA.4.2E The evaluator shall conduct penetration testing, based on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

AVA_VLA.4.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.4.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of identified
vulnerabilities in the target environment.

AVA_VLA.4.5E The evaluator shall determine that the TOE is highly resistant to penetration attacks.

